References
- D. H. Ballard, 'Generalizing the Hough transform to detect arbitrary shapes,' Pattern Recognition, Vol. 13, No. 2, pp. 111-122, 1981 https://doi.org/10.1016/0031-3203(81)90009-1
- K.-M. Lee and W. N. Street, 'A fast and robust approach for automated segmentation of breast cancer nuclei,' Proceedings of the IASTED International Conference on Computer Graphics and Imaging, pp. 42-47, 1999
- National Alliance of Breast Cancer Organizations (NABCO). Facts about breast cancer in the USA. New York, NY, USA, February 2001. http://www.nabco.org/resources/facts/usafacts.html
- T. Mouroutis, S. J. Roberts, and A. A. Bharath, 'Robust cell nuclei segmentation using statistical modelling,' IOP Bioimaging, Vol. 6, No. 2, pp. 79-91, 1998 10.1002/1361-6374(199806)6:2<79::AID-BIO3>3.0.CO;2-#
- W. H. Wolberg, W. N. Street, and O. L. Mangasarian, 'Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspirates,' Cancer Lerrers, Vol. 77, pp. 163-171, 1994 10.1016/0304-3835(94)90099-X
- O. L. Mangasarian, W. N. Street, and W. H. Wolberg, 'Breast cancer diagnosis and prognosis via linear programming,' Operations Research, Vol. 43, No. 4, pp. 570-576, 1995
- W. N. Street, 'Xcyt: A system for remote cytological diagnosis and prognosis of breast cancer,' In L. C. Jain, editor, Soft Computing Techniques in Breast Cancer Prognosis and Diagnosis, pp. 297-322. World Scientific Publishing, 2000
- A. S. Aguado and M. S. Nixon. A new Hough transform mapping for ellipse detection. Technical report, University of Southampton, UK, 1995. 1995/6 Research Journal Image, Speech and Intelligent Systems
- A. A. Kassim, T. Tan, and K. H. Tan. 'A comparative study of efficient generalised Hough transform techniques,' Image and Vision Computing, Vol. 17, No. 10, pp. 737-748, 1999 10.1016/S0262-8856(98)00156-5
- D. Ma and X. Chen, 'Hough transform using slope and curvature as local properties to detect arbitrary 2D shapes,' In Proceedings of the 9th International Conference on Pattern Recognition, pp. 511-513, 1988 https://doi.org/10.1109/ICPR.1988.28280
- S.-C. Jeng and W.-H. Tsai, 'Scale and orientation-invariant generalized Hough transform a new approach,' Pattern Recognition, Vol. 24, No. 11, pp. 1037-1051, 1991 https://doi.org/10.1016/0031-3203(91)90120-T
- M. Lee, J. Kittler, and K. C. Wong, 'Generalized Hough transform in object recognition,' In Proceedings of the International Conference on Pattern Recognition, Vol. 3, pp. 285-289, 1992 Lee, H.M.;Kittler, J.;Wong, K.C. https://doi.org/10.1109/ICPR.1992.201981
- K.-M. Lee and W. N. Street, 'Model-based detection, segmentation and classification for image analysis using on-line shape learning,' Machine Vision and Applications, Vol. 13, No. 4, 222-233, 2003 https://doi.org/10.1007/s00138-002-0061-6
- H. A. Rowley, S. Baluja, and T. Kanade, 'Neural network-based face detection,' IEEE Transacations on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 23-38, 1998 https://doi.org/10.1109/34.655647
- H. Li, M. A. Lavin, and R. J. LeMaster, 'Fast Hough transform: A hierarchical approach,' Computer Vision, Graphics, and Image Processing, Vol. 36, No. 2-3, pp. 139-161, 1986 10.1016/0734-189X(86)90073-3
- V. Chalana, W. Costa, and Y. Kim, 'Integrating region and edge information using regularization,' In Proceedings of the SPIE Conference on Medical Imaging, Vol. 2434, pp. 262-271, 1995 https://doi.org/10.1117/12.208697
- M. Kass, A. Witkin, and D. Terzopoulos, 'Snakes: Active contour models,' International Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331, 1988 https://doi.org/10.1007/BF00133570
- K.-M. Lee and W. N. Street, 'Incremental Feature Weight Learning and its application to Shapebased Query System,' Pattern Recognition Letters, Vol. 23, No. 7, 865-874, 2002 10.1016/S0167-8655(01)00161-1
- Pattern Recoginition Letters v.23 no.7 Incremental Feature Weight Learning and its application to Shapebased Query System K.M.Lee;W.N.Street