Investigation of Corrosion Minerals from the Remediation for TCE-Contaminate d Groundwater

TCE로 오염된 지하수 정화시 부식 광물에 대한 연구

  • Moon, Ji-Won (Environmental Sciences Division, Oak Ridge National Laboratory) ;
  • Moon, Hi-Soo (Department of Earth System Sciences, Yonsei University) ;
  • Yungoo Song (Department of Earth System Sciences, Yonsei University) ;
  • Kang, Jin-Kyoo (Department of Earth System Sciences, Yonsei University) ;
  • Yul Roh (Environmental Sciences Division, Oak Ridge National Laboratory)
  • Published : 2003.03.01

Abstract

The objective of this study was to investigate mineral precipitates, which derived from the zero valent iron (ZVI) corrosion during TCE dechlorination and to find the controlling factors in mineral precipitates. A series of column experiemnts were conducted to evaluate the location of ZVI and the effects of electrode arrangements in electro-enhanced permeable reactive barrier (E2PRB) systems. Based on mineralogical study, ZVI samples near the influent port had more lepidocrocite, ferrihydrite or Fe (oxy)hydroxide, and (phospho)siderite while backward samples had more akaganeite, magnetite/maghemite, and intermediate green rust (GR) I and GR II. A suite of mineral distribution was preferabley related to the dissolved oxygen and the increased pH. Controlling factors of mineral precipitates in an E2PRB system were found to be (1) pH, (2) dissolved oxygen, (3) the types of Fe intermediates, and (4) anionic species to form complex strongly.

본 연구는 0가 철 (ZVI)의 설치위치와 전극의 배열에 따른 다양한 조합의 전기적 투수성 반응벽을 대상으로 트리클로로에틸렌의 탈염소화 반응에 의한 정화시 ZVI의 부식에 기인하는 광물상침전물에 대해 알아보고, 이에 대한 조절 요소를 알아보고자 한다. 광물학적 연구 결과, 지하수 유입부의 ZVI 시료는 상대적으로 많은 레피도크로사이트, 훼리하이드라이트 혹은 철 수산화물과 (phospho)siderite가 산출되는 반면, 용출부의 ZVI 시료는 아카가나이트, 자철석/마그헤마이트, 그리고 중간 산물인 green rust (CR) I 과 CR II가 산출되었다. 이러한 광물 조합의 변화는 용존 산소 및 pH의 상승에 주로 기인한 것으로 나타났다. 또한 전기적 투수성 반응벽 내에 산출되는 광물상 침전물들의 조절 요소들은 (1) pH, (2) 용존산소, (3) 철의 부식시 중간 산물, (4) 음이온 종류 등으로 밝혀졌다.

Keywords

References

  1. Deutsch, W.J. (1997) Water/rock interactions. in:Groundwater geochemistry - Fundamentals and application to contamination. (eds) Lewis Publishers, Boca Raton, p. 47-75.
  2. Drissi, S.H., Refait, P.H., Abdelmoula, M., and Genin, J.M.R. (1995) The preparation and thermodynamic properties of Fe(II)-Fe(IlI) hydroxidecarbonate (green rust I); Pourbaix diagram of iron in carbonate-containing aqueous media. Corros. Sci., 37, 2025-2041.
  3. Edwards, R.W., Duster, D., Faile, M., Gallant, W.,Gilbeau, E., Myller, B., Nevling, K., and O'Brady, B. (1996) Presented at RTDF permeable reactive barriers action team meeting,San Francisco, CA., August 15-16.
  4. Genin, l M.R., Bourrie, G., Trolard, F., Abdelmoula,M., Jaffrezic, A., Refait, P., Maitre, V., Humbert, B., and Herbillon, A. (1998) Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)-Fe(111) green rusts: Occurrence of the mineral in hydromorphic soils. Environ. Sci. Technol., 32, 1058-1068.
  5. Gu, B., Phelps, T.J., Liang, L., Dickey, M.J., Roh,Y., Kinsall, B.L., Palumbo, A.V., and Jacobs ,G.K. (1999) Biogeochemical dynamics in zerovalent iron columns: Implication for permeable reactive barriers. Environ. Sci. Technol., 33,2 170-2 177.
  6. Gui, J. and Devine, T.M. (1994) The influence of sulfate ions on the surface enhanced Raman spectra of passive films formed on iron. Corros.Sci., 36, 441-462.
  7. Gui, J. and Devine, T.M. (1995) A SERS investigation of the passive films formed on iron in mildly alkaline solutions of carbonate/bicarbonate and nitrate. Corros. Sci., 37, 1177- 1189.
  8. Langmuir, D. (1997) Aqueous complexes. in:Aqueous environmental geochemistry, (eds) Prentice Hall, New Jersey, p.82-l 22.
  9. Liang, L., West, O.R., Korte, N.E., Goodlaxson,J.D., Pickering, D.A., Zutman, J.L., Anderson, F.J., Welch, CA., Pelfrey, M.J., and Dickey, M.J. (1997) The X-625 groundwater treatment facility: A field-scale test of trichloroethylene dechlorination using iron filings for the X-120/X-749 groundwater plume. ORNL/TM-13410,Oak Ridge National Laboratory , Oak Ridge, TN,63p.
  10. Matheson, L.J. and Tratnyek, P.G. ( 1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol., 28, 2045-2053.
  11. Mackenzie, P.D., Homey, D.P., and Sivavec, T.M. (1999) Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater., 68, 1-17.
  12. Moon, J.-W., Moon, H.-S., Roh, Y., Lee, S.Y., and Song, Y. (2001) Preliminary experiments for the remediation of trichloroethene-contaminated groundwater using direct current and zero-valent iron.Econ. Environ. Geol., 34, 307-3 13 (in Korean).
  13. Moon, J.-W., Moon, H.-S., Roh, Y., Kim, H., and Song, Y. (2002) Optimal remediation of TCEcontaminated groundwater using direct current and Feo. Econ. Environ. Geol., 35, 229-239 (in Korean).
  14. Moon, J.-W., Moon, H.-S., Roh, Y., Kim, H., and Lee, S.Y. (in press) Electro-enhanced permeable reactive barrier I. Experimental results of op- timal design for abiotic remediation of TCE contaminated groundwater according to zero valent iron installation and electrode arrangements.J. Contam. Hydrol.
  15. Odziemkowski, M.S., Schuhmacher, T.T., Gillham,R.W., and Reardon, E.J. (1998) Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corros. Sci., 40, 371-389.
  16. Page, M.M. and Page, C.L. (2002) Electroremediation of contaminated soils. J. Environ. Eng., 128,208-219.
  17. Phelps, T.J., Niedzielski, J.J., Malachowsky, K.J.,Schram, R.M., Herbes, S.E., and White, D.C. (1991) Biodegradation of mixed-organic wastes by microbial consortia in continuous-recycle expanded-bed bioreactors. Environ. Sci. Techno!.,25,1461-1465.
  18. Phillips, D.H., Gu, B., Watson, D.N., and Roh, Y.(2003) Impact of sample preparation on mineralogical analysis of Fe(0) reactive barrier materials. J. Environ. Qual., 32 (In Press).
  19. Phillips, D.H., Gu, B., Watson, D.N., Roh, Y.,Liang, L., and Lee, S.Y. (2000) Performance evaluation of a zero-valent iron reactive barrier:Mineralogical characteristics. Environ. Sci. Technol.,34, 4169-4176.
  20. Reardon, E.J. (1995) Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rate. Environ. Sci. Technol.,29, 2936-2945.
  21. Refait, P.H. and Genin, J.M.R. (1994) The transformation of chloride-containing green rust I into sulphated green rust II by oxidation in mixed cr and sot aqueous media. Corros.Sci., 36, 55-65.
  22. Roh, Y., Lee, S.Y., and Elless, M.P. (2000a)Characterization of corrosion products in the permeable reactive barriers. Environ. Geol., 40, 184-194.
  23. Roh, Y., Lee, S.Y. Elless, M.P., and Foss, J.E.(2000b) Incorporation of radioactive contaminants into pyroaurite-like phases by electrochemical synthesis. Clays Clay Miner., 48,266-271.
  24. Roh, Y., Lee, S.Y., Elless, M.P., and Moon, H.-S.(2000c) Electro-enhanced remediation of trichloroethene-contaminated groundwater using zerovalent iron. Environ. Sci. Health, Part A, 35,1061-1076.
  25. Russell, J.D. and Fraser, A.R. (1994) Infrared methods. in: Clay mineralogy: Spectroscopic and chemical determinative methods, (eds) Wilson,M.J., Chapman & Hall, London, p.11-67.
  26. Sagoe-Crentsil, K.K. and Glasser, F.P. (1993)Constitution of green rust and its significance to the corrosion of steel in Portland cement. Corrosion,49, 457-463.
  27. Schwertmann, U. and Cornell, R.M. (2000) Iron oxides in the laboratory: Preparation and characterization, 2nd (eds), Wiley-VCH Publishers, New York. 188p.
  28. Schwertmann, U. and Taylor, R.M. (1989) Iron oxides. in: Minerals in soil environments, (eds) Dixon, J.B. and Weed, S.B., SSSA Book series, no. 1, Soil Science Society of America, Madison,WI, p.379-438.
  29. Shoemaker, S.H., Greiner, J.F., and Gillham, R.W.(1995) In Assessment of barrier contaminant technologies. (eds) Rumer, R.R. and Mitchell, J.K., U.S. Department of Energy, Washington,D.C., p. 301-353.
  30. Srinivasan, R., Lin, R., Spicer, R.L., and Davis,B.H. (1996) Structural features in the formation of the green rust intermediate and Y-FeOOH.Colloid. Surface. A, 113, 97-105.
  31. Tratnyek, P.G., Johnson, T.L., Scherer, M.M., and Eykholt, G.R. (1997) Remediating ground water with zero-valent metals: Chemical considerations in barrier design. Ground Water Monit. Remed.,17,108-114.
  32. Van der Marcel, H.W. and Beutelspacher, H. (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. (eds) Elsevier Scientific Publishing Company, Amsterdam, 396p.
  33. Vogel, T.M. and McCarty, P.L. (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl-chloride, and carbondioxide under methanogenic conditions. Appl.Environ. Microb., 49, 1080-1083.
  34. Watson, D., Gu, B., Phillips, D.H., and Lee, S.Y.(1999) Evaluation of permeable reactive barriers for removal of uranium and other inorganics at the Department of Energy Y-12 Plant, S-3 disposal ponds; ORNL/TM-1999-143; Oak Ridge National Laboratory; Oak Ridge, TN.