MIN-SUM 복호화 알고리즘을 이용한 LDPC 오류정정부호의 성능분석

Convergence of Min-Sum Decoding of LDPC codes under a Gaussian Approximation

  • Heo, Jun (Dept.of Electronics Engineering, Kunkuk University)
  • 발행 : 2003.10.01

초록

최근에 소개된 density evolution 기법은 sum-product 알고리즘에서 LDPC 부호가 갖는 성능의 한계를 분석하였다[1]. 또한. Iterative decoding 알고리즘에서 전달되는 정보가 Gaussian 확률분포를 갖는 점을 이용하여 기존의 density evolution 기법을 단순화 시킨 연구결과가 소개되었다[2]. 한편. LDPC 부호의 한계 성능을 sum-product가 아닌 min-sum 알고리즘에서 분석한 결과가 최근에 발표되었다[3]. 본 논문에서는 이러한 일련의 연구 결과를 바탕으로 min-sum 알고리즘을 이용하면서 Gaussian 확률 분포 특성을 이용한 density evolution 기법을 소개한다. 제안된 density evolution 기법은 기존의 방법보다 적은 계산으로 정확한 threshold를 구할 수 있으며. 그 결과가 numerical simulation 결과와 잘 일치함을 나타내었다.

Density evolution was developed as a method for computing the capacity of low-density parity-check(LDPC) codes under the sum-product algorithm [1]. Based on the assumption that the passed messages on the belief propagation model can be approximated well by Gaussian random variables, a modified and simplified version of density evolution technique was introduced in [2]. Recently, the min-sum algorithm was applied to the density evolution of LDPC codes as an alternative decoding algorithm in [3]. Next question is how the min-sum algorithm is combined with a Gaussian approximation. In this paper, the capacity of various rate LDPC codes is obtained using the min-sum algorithm combined with the Gaussian approximation, which gives a simplest way of LDPC code analysis. Unlike the sum-product algorithm, the symmetry condition [4] is not maintained in the min-sum algorithm. Therefore, the variance as well as the mean of Gaussian distribution are recursively computed in this analysis. It is also shown that the min-sum threshold under a gaussian approximation is well matched to the simulation results.

키워드

참고문헌

  1. T. J. Richardson and R. L. Urbanke, 'The capacity of low-density parity-check codes under message-passing decoding,' IEEE Trans. Inform. Theory, vol. 47, PP. 599-618, February 2001 https://doi.org/10.1109/18.910577
  2. S. Y. Chung, T. J. Richardson, and R. L. Urbanke, 'Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation,' IEEE Trons. Inform. Theory, vol. 47, PP. 657-670, february 2001 https://doi.org/10.1109/18.910580
  3. A. Anastasopoulos, 'A comparison between the sum-product and the min-sum iterative detection algorithm based on density evolution,' Proc. Globecom Connf., PP. 1021-1025, 2001
  4. T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, 'Design of capacity-approaching irregular low-density parity-check codes,' IEEE Trans. Inform. Theory, vol. 47, PP. 619-637, February 2001 https://doi.org/10.1109/18.910578
  5. J. Hagenauer, D. Offer, and R. L. Urbanke, 'Design of capacity-approaching irregular low-density parity-check codes,' IEEE Trans. Inform, theory, vol. 42, PP. 429-445, March 1996 https://doi.org/10.1109/18.485714
  6. S. Y. Chung, G. D. Fomey, T. J. Richardson, and R. L. Urbanke, 'On the design of low-density parity-check codes within 0.0045 db of the shannon limit,' IEEE Communication tetters, vol. 5, PP. 58-60, February 2001 https://doi.org/10.1109/4234.905935
  7. L. Ping, S. Chan, and K. L. Yeung, 'Iterative decoding of multidimensional concatenated single parity check codes,' Proc. International Conf. Communications, pp. 131-135, June 1998
  8. X. Wei and A. Akansu, 'Density evolution for low-density parity-check codes under max-log-map decoding,' in Etectronics Letters, vol. 37, PP. 1125-1126, August 2001 https://doi.org/10.1049/el:20010755