=% 03-28-10B-4 G F A8 s =24 ‘03-10 Vol.28 No.10B

ECTP HEAZE A4 e EF: d 2D 584
A3 W14, 439 v, Y 4T, 33 =AF

Enhanced Communications Transport Protocol: Implementations
and Experimentations

Ki-Shik Park*, Juyoung Park**, Seok-Joo Koh***, and In-June Jo**** Regular Members
ABSTRACT

This paper proposes a protocol for the reliableand QoS-aware multicast transport, which is
called the Enhanced Communications Transport Protocol (ECTP). The ECTP has so far been
developed and standardized in ITU-T SG17 and ISO/IEC JTC 1/SC 6. Differently from the
conventional reliable multicast, as shownin the IETF RMT WG, the ECTP additionally provides
several distinct features such as tight control of multicast session, tree-based error control, and
QoS management. For the tight control of multicast connections, the sender is at the heart of
one-to-many group communications, and it is responsible for overall connection management
such as connection creation/termination, pause/resumption, and the join and leave operations.
For tree-based reliability control, ECTP configures a hierarchical tree during connection creation.
Error control is performed within each local group defined by a control tree, which was partly
designed like the IETF TRACK approach. Each parent retransmits lost data in response to
retransmission requests from its children. For QoS management, ECTP supports QoS negotiation
for resource reservation, and it also provides QoS monitoring and maintenance operations. ECTP
has been implemented and tested on Linux machine, along with Application Programming
Interfaces based on Berkeley sockets. For basic testing of the ECTP functionality, we give some
preliminary experimental results for performance comparison of ECTP and TCP unicast
transports. In conclusion, we describe the status of ECTP experimentations over APAN/KOREN
testbed networks

* G AREAAT] FEATAHE] (kipark@etrire kr), **$Hd2-5AA °J HFATAE (jypark@etrire kr),
xgtn B NATY B -i— T-ME] (sjkoh@etri.re kr), ****HH X-l]EH &t 7] F 8 (injune@mail.peu.ac.kr)
=EHE 1 030300-0722, HEYAE 2003 79 28

876

=¥/ECTP HEAM2E A% zaed: 73 @ A

g

H
4

of

it

b

I . Introduction

IP multicast issue has been one of the most
important challenges in the research and
development areas related to Internet [1]. In
particular, we note that market requirements
for multicast applications have recently
emerged and rapidlygrown, such as
webcasting, Internet TV, remote education,
and stock-tickers. For realization of Internet
multicast services, the following issues need
to be addressed: Reliable Multicast Transport
(RMT) and the Qaulity of Services (QoS)
management in multicast transport. Actually,
a lot of researches have been done in the
RMT area [2], and so much standardization
efforts have been made [3, 4]. Regardless of
such works, however, neither satisfactory
solution nor standard has been produced.

In this paper, we discuss a new standard
multicast transport protocol that addresses
those issues on QoS as well as RMT, which
is called Enhanced Communications Transport
Protocol (ECTP) [5, 6]. Until now, the ECTP
has been developed and standardized in
ITU-T SG17 and ISO/IEC JTC 1/SC 6 [7].
From such an effort, the ECTP was finally
approved by ITU-T and ISO/IEC in 2001.
This paper provides an overview of ECTP
describesthe

protocol mechanisms and

associated implementation and
experimentation results.

ECTP operates over IP networks that have
IP multicast forwarding capability. ECTP is
targeted for tightly controlled multicast
services. The sender is at the heart of
multicast group communications. The sender
is responsible for overall connection
management such as connectioncreation/
connection

termination, pause/resumption,

and user join/leave operations. ECTP
provides tree-based reliability control for
multicast data transport, which has been

designed to keep congruency with those

being proposed in the IETF RMT WG [4].
ECTPdistinctively provides QoS management
for active multicast sessions by way of QoS
negotiation, monitoring, and maintenance
operations, so as to keep QoS of multicast
session to be stable.

The ECTP has been designed based on
preliminary standardization works defined in
[8 9, 10]. The ECTP has been so far
standardized in the ITU-T SG 17 and
ISO/IEC JTC 1/SC 6, as a joint work item
[5, 6. The ECTP has so far been
implemented and experimented over Linux
machines and local test environments. With
experimentation experiences on ECTP, we
now plan to extend the real validation of
ECTP further to the real test networks such
as the Asia-Pacific Advanced Networks
(APAN) testbed.

This paper is organized as follows. Section
2 provides overall operations of the ECTP
protocol. In Section 3, we discuss the
protocol mechanisms for reliability control
and QoS management more in details,
together with ECTP packet structure. Section
4 describes implementation details including
implementation stack with a kernel structure,
andthe associated Application Programming
Interfaces (API) libraries that will be referred
to by multicast applications. In Section 5, we
present some preliminary experimental test
results for performance comparison of the
ECTIP and TCP connections, along with
discussion of APAN testbed experimentation.
Section 6 concludes this paper.

O. ECTP Overview

ECTP is a standard transport protocol

designed to support Internet multicast
applications. ECTP operates over UDP/IP in
multicast-enabled networks.

ECTP supports the connection management
functions, which include connection creation

and termination, connection pause and

877

=5 A 88 =74 03-10 Vol.28 No.10B

resumption, and late join and leave. For
reliable delivery of multicast data, ECTP
provides the protocol mechanisms for error
control. For QoS management of multicast
sessions, ECTP supports QoS negotiation,
monitoring, and maintenance operations.

Figure 1 shows an overview of the ECTP

operations.
Connection Creation
— Control Tree Creation
i QoS Negotiation
Multicast Data Transfer
—— Trec-bascd Reliability Control '
ECTP - T e

Connection

- —_— J—
i F——t Tree Membership Maintenance
Lifctime R o e N

— Late Join and Leave
l— QoS Menitoring
— QoS Maintenance

Conncction Termination

Figure 1. ECTP protocol operations

ECTP is
controlledmulticast connections. The ECTP

targeted for tightly

sender is at the heart of the multicast group
communication. The sender, designated as
connection owner, is responsible for the
overall management of the connection such
as connection creation and termination,
connection pause and resumption, and the
late join and leave operations.

The ECTP sender triggers the connection
creation process by sending a connection
creation message. Each enrolled receiver
responds with a confirmation message to the
sender. The connection creation is completed
when the sender receives the confirmation
messages from the all of the active receivers,
or when a pre-specified timer expires. QoS
negotiation may be performed in the

878

connection creation.

Throughout the connection creation, some
or all of the enrolled group receivers will
join the connection. The receivers that have
joined the connection are called active
receivers. An enrolled receiver that is not
active can participate in the connection as a
late-joiner. The late-joiner sends a join request
to the sender. In response to the join request,
the sender transmits a join confirm message,
which indicates whether the join request is
accepted or not. An active receiver can leave
the connection by sending a leaving request
to the sender. A trouble-making receiver, who
cannot keep pace with the current data
transmission rate, may be ejected.

After a connection is created, the sender
begins to fransmit multicast data. For data
transmission, an application data stream is
sequentially segmented and transmitted by
means of data packets to the receivers. The
receivers will deliver the received data
packets to the applications in the order
transmitted by the sender.

To make the protocol scalable to large
groups, ECTP employs the
tree-based reliability control mechanisms. A

multicast
hierarchical tree is configured during
connection creation. A control tree defines a
parent-child relationship between any pair of
tree nodes. The sender is the root of the
control tree. In the tree hierarchy, local
groups are defined. A local group consists of
a parent and zero or more children. The
error, flow and congestion controls are
performed over the control tree.

Figure 2 illustrates a control tree
hierarchy for reliability control, in which a
parent-child relationship is configured
between a sender (S) and a receiver (R), or
between a parent receiver (R) and its child
receiver (R). ECTP

tree-configuration mechanisms [4, 5]

provides the

EE2/ECTP HE|NAE A4 Z2EZE 78 2 A5EY

|
|

®

Figure 2. Logical control tree for reliability control

In ECTP, error control is performed for
each local group defined by a control tree. If
a child detects a data loss, it sends a
retransmission request to its parent via
acknowledgement (ACK) packets.

An ACK
information that identifies the data packets,

message contains the
which have been successfully received. Each
child can send an ACK message to its
parentusing one of two ACK generation
rules: ACK number and ACK timer. If data
traffic is high, an ACK is generated for the
ACK number of data packets. If the traffic is
low, an ACK message will be transmitted
after the ACK timer expires.

After retransmission of data, the parent
activates a retransmission back-off timer.
During the time interval, the retransmission
request(s) for the same data will be ignored.
Each parent can remove the data out of its
buffer =~ memory, if those have been
acknowledged by all of its children.

During the data transmission, if network
problems (for example, severe congestion), the
sender suspends the multicast data
transmission temporarily. In this period, no
new data is delivered, while the sender
transmits periodic null data messages to
indicate that the sender is alive. After a
pre-specified time has elapsed, the sender
resumes the multicast data transmission.

After an ECTP connection is created, QoS
monitoring and maintenance operations are
performed for the multicast data transmission.
For QoS monitoring, each receiver is required

to measure the parameter values experienced.
Based on the measured values, a receiver
determines a parameter status value for each
parameter. These status values will be
delivered to the sender via ACK packets.
Sender aggregates the parameter status values
reported from receivers. If a control tree is
employed, each parent LO nodes aggregates
the measured values reported from its
children, and forwards the aggregated value
to its parent via its ACK packets.

Sender takes QoS maintenance actions
necessaryto maintain the connection status at
a desired QoS level, based on the monitored
status values. Specific rules are pre-configured
to trigger QoS maintenance actions such as
data transmission rate adjustment, connection
pause and resume, and connection
termination. Those rules are based on
observation that how many receivers are in
the abnormal or possibly abnormal status.

The sender terminates the connection by
sending a termination message to all the
receivers, after all the multicast data are
transmitted. =~ The connection may also
terminate due to a fatal protocol error such
as a connection failure.

M. ECTP in Details

In this section, we describe ECTP protocol
mechanisms for tree-based error recovery and
QoS management more in details. We also
discuss ECTP packet structure.

1. Error Control in ECTP

In ECTP, error recovery operations consist
of error detection by receivers, retransmission
request by receivers via ACK packet, and
retransmissions by parents.

A. Error detection

The header checksum field is used for

879

&

%83 =E 3 ‘03-10 Vol.28 No.10B

detection of packet corruption, and the
sequence number field is for detection of a
packet loss. When a data packet is received,
each receiver examines the header checksum.
If the checksum field is invalid, the packet is
regarded as a corruption and shall be
discarded. A corruption is treated as a loss.
The loss can be detected as a gap of two
consecutive sequence numbers for data (DT)
packets. The loss information is recorded into
the ACK bitmap, which is attached to the
subsequent ACK packets.

B. Retransmission request

ACK packets are used for theretransmission
requests. When a receiver detects a gap in
the sequence numbers of received packets, it
sets to zero the bit of the ACK bitmap,
which corresponds to the lost DT packet. The
ACK Dbitmap is
acknowledgement element, which is attached
to the subsequent ACK packet and delivered
to the parent by the ACK generation

included into the

mechanisms.

For a local group, a parent and its children
maintain the following variables to determine
the status of received DT packets:

a) Lowest Sequence Number (LSN): If the
node is a child, this is the sequence number
of the lowest numbered DT packet that has
not yet been received. If the node is a
parent, then this is the sequence number of
the lowest numbered DT packet that has not
yet been received by any of its children;

b) Highest Sequence Number (HSN): If
the node is a child, this is the sequence
number of the highest numbered DT packet
that has been received. If the node is a
parent, then this is the sequence number of
the highest numbered DT packet that has
been received by any of its children nodes;

To request the retransmissions of lost data,
each child makes an acknowledgement
element containing the LSN, Valid Bitmap

330

_packetsmaximally.

Length and ACK Bitmap. The Valid Bitmap
Length is set to HSN LSN + 1. For an
example, for LSN = 15 and HSN = 22, the
Valid Bitmap Length = 8. The ACK Bitmap
specifies a success or a failure of a packet
delivery: '1' for success and '0' for failure. A
bitmap can represent Bitmap Length * 32
Suppose Bitmap =
01101111. Then the DT packets with the
sequence number 15 and 18 are lost.

Note that an intermediate LO on the tree
has two sets of the LSN and HSN
parameters: the one set as a child and the
other set as a parent. The parameter values
for a child are updated by the status of the
data reception from TO, while the parameter
values for a parent will be refreshed by the
acknowledgement element from the children.

When a parent sends a HB packet to its
children, it sets the sequence number field to
the LSN. The data packets, whose sequence
number is smaller than the LSN, cannot be
recovered.

C. ACK generation

Each child generates an ACK packet by
ACK Generation Number (AGN) or by ACK
Generation Time (AGT). Each child sends an
ACK packet to its parent every AGN packet.
To do this, a child receives a Child ID from
its parent in tree configuration, which is
contained in the tree membership element.
Each child sends an ACKpacket to its parent,
if the sequence number of a DT packet
modulo AGN equals Child ID modulo AGN,
ie., if

Packet Sequence Number % AGN = Child
ID % AGN.

Suppose AGN = 8 and Child ID = 2. The
child generates an ACK packet for the DT
packets whose sequence numbers are2, 10, 18,
26, etc. This ACK generation rule is applied
when the corresponding DT packet is
received or detected as a loss by the child.

1 11
e XL
R

/ECTP BENAE dF ZTaEd

C
]
e

T -
s

e
M
o

4

When data traffic is low, a receiver may
not send an ACK packet for a long time.
This could cause a long wait for packet
stability at the parent and could also make
the receiver appear to have failed. AGT is
used to ensure that the receivers respond in
a timely manner. A receiver sends at least
one ACK packet within the AGT interval.
AGT timer is initialized when a child
receives the first DT packet, and it is reset
each time a new ACKpacket is sent.

In summary, when the data traffic is high,
ACK packets will be generated by the AGN
number rule. On the other hand, ACK
packets are triggered when AGT timer
expires, if the traffic load is low.

D. ACK aggregation

Each parent uses ACK packets to gather
status information for the error, flow and
congestion controls. FEach time a parent
receives an ACK packet from any of its
children, it records and updates the status
information on which packet(s) have been
successfully received. A DT packet is defined
as a stable packet if all of the children have
received it. The stable DT packets are
released out of the buffer memory of the
parent. When a parent receives an ACK
packet from one of its children, if one or
more packet losses are indicated, the parent
transmits the corresponding RD packets to all
of its children over its multicast control
address.

E. Retransmission

In response to an ACK packet, each parent
retransmits RD packets for the data that are
requested by any children, if it holds the
requested data packets. RD packets are
retransmitted over the multicast control
address.

After a parent sends an RD packet for the

requested data, it activates the Retransmission
Back-off Timer (RBT). During that time,
retransmission requests for the same data
packet will be ignored.

The maximum number of retransmissions
for a lost DT packet shall be bounded to
Maximum Retransmission Number (MRN).
The parent ignores further retransmission
requests exceeding MRN, and removes the
corresponding data out of its buffer memory.

3.2 QoS Management in ECTP

This paper proposes the QoS management
for one-to-many multicast transportprotocols.
The QoS management function consists of the
following operations: QoS negotiation, QoS
monitoring, and QoS maintenance.

In the connection setup phase, sender
receivers whether QoS

enabled. When QoS
management is enabled, sender must also

informs the
management is

specify whether or not QoS negotiation will
be performed in the connection. QoS
monitoring and maintenance operations are
performed.

In general, QoS represents the quality of
services required for satisfactory reception of
application data at the receiver side, to
achieve desirable audio/video display quality
for example.In this paper, it is assumed. that
the QoS requirements of an application are
expressed in terms of one or more QoS
parameters such as throughput, transit delay,
transit delay jitter, and data loss rate.
Depending on the application's requirements,
some QoS parameters may not be used in
the connection. For example, a non-real time
service might not impose the transit delay
requirement. On the other hand, new QoS
parameter(s) may be defined in the future, as
application requirements expand.

From the requirements of applications,
sender will determine the target values for
each QoS parameter. How to map from the

831

2528 38) =57 03-10 Vol.28 No.10B

application's requirements to those target
parameter values is outside the scope of this
paper. Application programs could be
developed to carry out such mappings

QoS negotiation is performed in the
connection creation phase. Sender proposes
the desired target values for each QoS
parameter to all receivers by multicast. For
throughput, three target values are specified:
CHQ (controlled highest quality), OT
(operating target) and LQA (lowest quality
allowed). For the other parameters such as
transit delay, transit delay jitter, and data
loss rate, only two target values are specified:
OT and LQA.

If QoS negotiation is enabled, each receiver
can propose modifications to the sender's
proposed parameter values. These modified
values will be determined by considering the
system capacity at the receiver side and
network environments.

The parameter values modified by receivers
are delivered to sender via feedback
messages. The sender arbitrates different
parameter values for various receivers by
taking a commonly agreed range of values.

Application's requirements

rTnget values for QoS pa.rame(em—l

) Arbitration of the modified values by sender

|

1) Target values proposed by sender
3) Values modified by receivey

3)

2)

Receiver

Receiver

2) Reservation of network resources by receiver

Figure 3. QoS negotiation

Figure 3 shows an abstract sketch of QoS

negotiation. From the application

882

requirements, a set of target QoS parameter
values are configured. Sender informs the
receivers of the target values (step 1). Based
on those target values, each receiver begins
to make resource reservations with help of
RSVP or Diffserv (step 2). If QoS negotiation
is enabled in the connection, each receiver
may propose modified values for QoS
parameters (step 3). From the modified
parameter values, the sender determines the
arbitrated values (step 4). These
arbitratedvalues are delivered to the receiver
via subsequent control packets, and will be
used for QoS monitoring and maintenance.

After a connection is created, the QoS
monitoring and maintenance operations are
performed for the multicast data transmission.
For QoS monitoring, each receiver is required
to measure the parameter values experienced.
Based on the measured values and the
negotiated values, a receiver determines a
parameter status value for each parameter as
an integer: normal (0), reasonable (1), possibly
abnormal (2), or abnormal (3). These status
values will be delivered to the sender via
control packets such as ACK packets.

Sender aggregates the parameter status
values reported from the receivers. If a
control tree is employed, each parent LO
nodes aggregates the measured values
reported from its children, and forwards the
aggregated value(s) to its own parent using
ACK packets.

Figure 4 illustrates the QoS monitoring and
maintenance operations proposed in this
paper. Sender takes QoS maintenance actions
necessary to maintain the connection status at
a desired QoS level, based on the monitored
status values. Specific rules are pre-configured
to trigger QoS maintenance actions such as
data transmissionrate adjustment, connection
pause and resume, and connection
termination. Those rules are based on
observing how many receivers are in the

abnormal or possibly abnormal state.

FE/ECTP HEAE A4 Z2es 78 2 45EA

Adjustment of Connection Connection
Data transmission rate] Pause and Resume Termination

QoS maintenance

¥

QoS monitoring

multicast data transmission @

Figure 4. QoS monitoring and maintenance

3.3 Packet Structure

A) ECTP Packet Types

ECTP packets are classified into data and
control packets. Data and Retransmission
Data are the data packets. All the other
packets are used for control purposes. Table
1 summarizes the packets used in ECTP. In
the table, the transport type 'multicast
represents global multicast using a multicast
data address, while the 'local multicast' does
local multicast using a multicast control
address. The Retransmission Data and
Heartbeat packets are delivered from a parent
to its children by local multicast.

Table 1. ECTP packets

Packet Transport Type From To
Creation Request Multicast Sender | Receivers
Creation Confirm Unicast Child Parent
Tree Join Reguest Unicast Child Parent
Tree Join Confirm Unicast Parent Chitd

Data Multicast Sender Receivers
Null Data Multicast Sender | Receivers
Retransmission Data | (Local)Multicast Parent Children
Acknowledgement Unicast Child Parent
Heartabeat (Local}Multicast Parent Children
Late Join Request Unicast Receiver Sender
Late Join Confirm Unicast Sender Receiver
. Parent/ Child/
Leave Request Unicast Child Parent
Connection . .
. Multicast Sender Receivers
Termination

Each control or data packet consists of a
header part and a data part, and the header
part can contain zero or more extension
elements as illustrated in Figure 5.

bytes 0 k-1 k . t-1n R . 7 PL-1

fixed header extension elements data X

- S - - -
Header part Oata part

PL: Packet Length

Figure 5. ECTP packet structure

In the figure, k', 'n' and 'PL' represent the
length of the fixed header, the header part
and the total packet.

B) Fixed header

The fixed header contains the fields of the
parameters frequently used in the protocol.
An example of the fixed header with 16
bytes is depicted below [5]:

¢) 8 i 2 3

nextelement version pachet type checksum
destination port source port
sequence number

pavload length teserved
Figure 6. ECTP fixed header

C) Extension elements

The extension elements can follow the fixed
header, and thus the header part of a packet
is composed of a fixed header and zero or
more extension elements. Each extension
element has a next element field, as shown
in Figure 7, which indicates the type of the
next extension element. The header part can
thus chain multiple extension elements.

bytes 0 B 34 . _Ei-y

next element control information

EL: length of the extens.on elatant

Figure 7. Structure of an extension element

ECTP defines five extension elements:

383

gk F 2183 =] ‘03-10 Vol.28 No.10B

® Connection information element

This element contains information on
generic characteristics of the connection
including the connection type, tree
configuration option, connection creation
timer, and ACK bitmap size, etc. The control
packets used for the connection creation
include this element.

® Acknowledgment element

This element can be used for
acknowledgment of the data packets and for
report of the perceived connection status at
the receiver side. A bitmap is used to
indicate the selective acknowledgements of
the received data.

® Tree information element

This element describes information on the
local group defined by the control tree,
including child ID and the number of active
children, etc.

® Timestamp element

This contains the timestamp information,
which may be used for calculating of round
trip time for congestion control.

® QoS element

This extension element specifies QoS-related
parameters. The following parameters can be
specified: throughput, transit delay, transit delay
jitter, and packet loss rate. If the resource
reservation is enabled in the connection, these
QoS parameter values willbe used as the
target value for the resource reservation.
During the connection, each receiver reports
the measured QoS parameter values to its

parent.
IV. Implementations

detailed
implementations of ECTP along with the

This section describes the

associated packet format and API (application
programming interfaces).

41 Kemel structure for implementation
The ECTP is currently being implemented

884

on Linux RedHat 7.0 platform, with the C
language. Some libraries are used such as
LinuxThreads for ECTP Timerand Gtk+ for
the ECTP applications with enhanced Graphic
User Interface.

The current ECTP implementation is
targetedto operate on top of UDP (UDP port:
9090 temporarily), with ECTP daemon
process. Figure 8 shows the structure of
ECTP kernel. Each application is assumed to
use IPC (Inter Process Communication) for
communications to ECTP.

As shown in the figure, an ECTP is
designed to support one or more applications,
and an IP host has an ECTP protocol stack,
like the TCP or UDP. To enable ECTP, the
application program on the ECTP must be
compiled along with the ECTP socket
interface "msocket". The use of ECTP socket
is very similar to that of the BSD socket.

The communications between ECTP and an
application are based on the IPC
(Inter-Process Communication). The figure
illustrates some representative functions and
system calls used in the protocol stacks.

app app app

Socket system calls

i PC Cotp wyecal
¥

Socket system call implementations azkina
Socket layer functions

!

ECTP

T Berkeley socket intesface

uopP

Figure 8. ECTP Implementation Stack

As shown in the figure, an ECTP is

designed to support one or more applications,

1. T
puL

/ECTP HEMN2E A4 Z2EF 74 4 A5EY

and an IP host has an ECTP protocol stack,
like the TCP or UDP. To enable ECTP, the
application program on the ECTP must be
along with the ECTP
interface "msocket". The use of ECTP socket

compiled socket
is very similar to that of the BSD socket.

The communications between ECTP and an
application are based on the IPC
(Inter-Process Communication). The figure
illustrates some representative functions and
system calls used in the protocol stacks.

42 ECTP API (Application Programming

Interface)

The ECTP API functions are designed
based on the well-known Berkeley socket API
in the fashion that the Berkeley socket API
functions are used as wrapping functions in
ECTP APL For indication of difference from
the Berkeley socket functions, ECIP API
functions are named with a prefix 'm'.

Applications on ECTP are compiled with
msocket libraries. The msocket is similar to
the well-known BSD socket. The functions
used by ECTP are named with a prefix of
'm', to differentiate the existing BSD
functions.

Each function has the following syntax and
usage in the ECTP protocol [6]:

® int maccept(int msockfd, struct sockaddr
*cliaddr, socklen_t *cliaddrien);

This function is used for LO and LE to
generate CC (Creation Confirm) packet, after
reception of CR packet and the tree
formation.

® ssize t msend(int msockfd, const wvoid
*userdata, size_t nbytes, int *flags);

This is used for TO to tranmit the
multicast data.

® int mclose(int mscokfd);

This is used to terminate an
ECTPconnection

® int msocket(int family, int type, int
protocol);

This is used to open an ECTP socket. This
function includes the other socket interfaces,
which is a typical example of the "wrapping"
function. Some example functions types
embedded in the msocket are illustrated
below:

® int mbind(int msockfd, const struct sockaddr
*myaddr, socklen_t myaddrlen, const struct
sockaddr “*grpaddr, socklen_t grpaddrlen, const
struct sockaddr *ctladdr, socklen_t ctladdrlen, int
role);

This function keeps the information on the
node type such as TO, LO or LE. In case of
TO or LO, it may include its multicast
control address.

® int mconnect(int msockfd, const struct
sockaddr *rmtaddr, socklen_t rmtaddrlen, int
“flags);

This is used when TO starts an ECTP
connection. The rmtaddr represents the
multicast group address.

® size t mrecv(int msockfd, wvoid ‘*userdata,
size_t nbytes, int flags, struct sockaddr *fromaddr,
socklen_t *fromaddrlen);

This is used to receive an ECTP packet,
which is similar to the BSD counterpart. But,
to support multiple senders, the fromaddr is
added to indicate the sender of the received
data.

® int mgetsockopt(int msockfd, int level, int
optname, void *optval, socklen_t *optlen) and int
msetsockopt(int msockfd, int level, int optname,
void *optval, socklen_t *optlen);

These functions are used to define the
options necessary for the protocol.

885

o

I 5483 =8 A ‘03-10 Vol.28 No.10B

ccerver
Sender Recener (Late Jotner)
msacketl)
“mbnd)
s ckett) <

) . " msetsockopty
mmdt) PSS

maceeptt)
asct.ockopt 1
CUNN ESTABLISHMENT

e mectt)

LATE Jom

‘meonnectt |

Cons TERMIVATION

Figure 9. Use of ECTP API functions

Figure 9 illustrates an exampleuse of ECTP
API functions in terms of the sender, early
and late joining receivers. Sender invokes
mconnect() after mbind() and msetsockopt(). A
receiver waits for the connection
establishment message from the sender. In
case of latejoiner, it tries to connect to the
sender by invoking mconnect() function. After
connection is established, the sender begins to
send the multicast data. During the data
transmission, the ECTP protocolfunctions such
as error recovery and QoS management will
be provided to the applications services or

users.

V. Experimental Results

This section first shows how the basic
ECTP protocol functions operate via the
screen captures from some experiments in a
pre-configured local test environment.
Through such experimentation, we also give
some preliminary performance test results for
ECTP protocol and multiple TCP connections.
This comparison is done only so as to

evaluate how much bandwidth gains the

336

ECTP provides over multiple TCP

connections. In this section, we also
summarize the current status about ECTP test
and validation over real APAN/KOREN

testbed networks.

5.1 Preliminary Test of ECTP protocol

Functions

In the ECTP implementation, each IP host
runs the ECTP protocol daemon and the
application itself in the pair-wise manner. The
following subsections describe some of the
basic protocol operations: connection creation,
late join, and error recovery.

A) Connection Creation

Figure 10 shows the connection creation
operation displayed at the sender (TO) and
receiver(LE) sides. The creation of an ECTP
connection is activated when the sender
sends a CR packet. Each receiver receives CR
and then HB packet from the sender. In
response to the HB, it sends a TJ packet to
the TO. When the receiver receives a TC
packet from the sender, it sets the status as
"established". After the CCT_time has elapsed,
TO sets the status as ESTABLISHED.

Figure 10. Connection Creation

B) Late Join

Figure 11 shows the late join operation

= B

TORL

/ECTP BEFA2E A$ TIZEH: -

displayed at the sender (TO) and receiver(LE)
When a the ECTP
connection as a late joiner, it sends a JR

sides. receiver joins
packet to TO. In response to the JR packet,
TO sends a JC packet to the late-joiner.
When it receives JC packet form the TO, it

begins to join a parent.

Figure 11. Late Join

)
Figure

Error Recovery
12 the
operation displayed at the sender (TO) and

shows error recovery
receiver (LE) sides. When a receiver detects a
packet corruption (by checksum) or packet
loss (by sequence number), it requests a
retransmission of lost data packets to its
Fach ACK packet contains the
ACK (which data

packets have been successfully received)

parent.
selective information

Each parent keeps the ACK information on
each of its children. When a data packet has
been acknowledged by all of its children, it
deletes the data packet from the buffer. Each
child generates an ACK packet to its parent
by AGN (ACK generation number) and AGT
(ACK generation timer). The following is the
captured picture for generating ACK packet
and aggregation of those ACK.

In the figure, the left-side host is TO, and
the right-side three nodes are LEs. In this
example, the AGN and ACK Bitmap Size are

set to 8 and 32, respectively. Each child
generates an ACK packet if the sequence
number of the received data packet % AGN
== Child ID % AGN. On the other hand, if

the AGT
generates an ACK packet.

timer expires, the child

Figure 12. Error Recovery

5.2 Some Experimental Test Results
To test ECTP and TCP connections,

configure a test network consisting of one
sender and 10 receivers. The sender generates
the data stream until totally 100, 200, and
300 data packets have been generated. For
each test instance, the totalnumber of data
and control packets flowing in the network is
calculated for the ECTP and TCP connections.

The following figure shows an

configuration of local test environment for the

testing and experimentation, which consist of

one sender (TO) and three receivers (LEs).

(== R = =

COMSUN RTO BELLDANDY URD
168.188 48.17 168.188.48.221 168.188 48.102 168.188.48.121
(T0) (LE) (2] (LE)

Figure 13. Local test environment

also

we

example

887

2

Number of packetsin the netwe
o -

nurmper of nodes

---o-- ECTP Control Packet ——ECTP Data Packet
---x-+ TCP Control Packet —— TCP Data Packet

Test result for transmission of data 100 packets

(a

-

Number of packets in the netwe
N ~

number of nodes

-+-e-- ECTP Control Packet —e— ECTP Data Packet
«+-x--- TCP Control Packet —»— TCP Data Packet

{b) Test result for transmission of data 200 packets

Number of packets in the netwe

number of nodes

-+-e--. ECTP Control Packet —— ECTP Data Packet
---x--- TCP Control Packet —»—TCP Data Packet

(c) Test result for transmission of data 300 packets

Figure 14. Performance comparison with TCP
connections

Figure 14 shows the test results for ECTP
and TCP connections, in terms of the total
number of data and control packets generated
in the network. From thefigures, we see that
the ECTP connection generates almost an
equal number of data and control packets,

388

independently of the number of receivers. On
the other hand, in multiple TCP connection,
the number of data and control packets
generated gets larger, as the number of
receivers increases.

53 APAN/KOREN Testbed

For experimentations over real
multicast-enabled networks, we have
established a testbed environment over the
APAN/KOREN (Korea
Network).
organizations arebeing involved on the APAN

test of ECTP: ETRI, KAIST, CNU (Chungnam

Research and

Education Up-to-date, four

National Univ)), and HUFS (Hankook
University of Foreign Studies). Those
organizations are interconnected via

APAN/KOREN networks that provide the
multicast forwarding capability over Internet

as well as multicast tunneling.

o~ P /0(3, h
A xarST Y, &Kgnmhﬁ..\ NP Q)
w N P g A

w2y /" APAN/KOREN Y
«l LAY pevring N
e NG rovtai

N g -

{ b Rauter
b - x
755 an 209

Wi
{203 23 25363, 2 -

-

W e
Pt
~
™ - ”, Tunneling
ol S » 7 EIRIKOREN-Others-+uFs)
ekoReyERD | e o7

= 7 — .
T sty B womandn, <

) .

ErRT ot 1
APAN Test o
e ;) N NI

Figure 15. APAN/KOREN testbed networks

Figure 15 illustrates the network topology
of the APAN/KOREN testbed for ECTP
experimentations. In the figure, the ETRI
node plays the sender and receivers via two
local subnetworks, where the associated
servers such as web server and media server
will be located. Meanwhile, each of the other
participants will play a role of receiver over
the APAN/KOREN networks. In case of
KAIST, the native multicast forwarding will
be used for traffic delivery from ETRI, by

using DVMRP protocol betweenhost and

-

IS

JECTP HE/2E A% ZREZ 78 2 J5EY

edge, and PIM within backbone of KOREN.
Communications to the other participants
from ETRI will be made via multicast
tunneling. Until now, the configuration of the
testbed network
completed, and the traffic delivery is being

connection has been

made (see http://ectp.etrirekr/ for more
detailed information on APAN testbed and
ECTP code release.)

VI. Conclusions

In this paper, we have discussed a new
standard multicast transport protocol that
addresses those issues on QoS as well as
RMT, which is called Enhanced
Communications Transport Protocol (ECTP).
Differently from the IETF RMT WG
approaches, the ECTP is designed to support
tightly controlled muiticast connections. The
sender is at the heart of multicast group
communication. The sender is responsible for
overall connection management such as the
connection creation and termination, the
connection pause and resumption, and the
join and leaveoperations. For tree-based
reliability control, a hierarchical tree is
configured during connection creation. Error
control is performed for each local group
defined by a control tree. Each parent
retransmits lost data, in response to
retransmission requests from its children.

Until now, the ECTP has been developed
and standardized in ITU-T SG17 and
ISO/IEC JTC 1/SC 6. From such an effort,
the ECTP was finally approved by ITU-T and
ISO/IEC in 2001. This paper provides an
overview of ECTP protocol mechanisms and
describesthe associated implementation and
experimentation results. The ECTP validation
works and code releases are still being
progressed. Based on the test results, it is
expected that the ECIP will be more
improved and wused in the real Internet

multicast applications and services.
REFERENCES

[i] Diot C et al, "Deployment Issues for the IP Multicast
Service and Architecture", IEEE Networks
Magazine's Special Issue on Multicast, January,
2000.

[2] K Obraczka, "Multicast Transport Protocols: A
Survey and Taxonomy", IEEE Communications
Magazine, pp. 94 102, January 1998.

[3] IETF Reliable Multicast Transport (RMT) Working
Group, Available from
http:/ /www.ietf.org/html.charters/rmt-charter.
html, 2003.

[4] S. Koh et al, "RMT: Tree auto-configuration,” IETF
RMT WG
Drafl <draft-ietf-rmt-bb-tree-config-03.txt>, March
2003.

[5] ITU-T SG17 and ISO/IEC JTC 1/SC 6, "ECTP:
Specification of Simplex Multicast Transport,"
ITU-T X606 | ISO/IEC 14476-1, 2002.

[6] ITU-T SG17 and ISO/IEC JTC 1/SC 6, "ECTP:
Specification of QoS Management for Simplex
Multicast Transport,” ITU-T X606.1 | ISO/TEC CD
14476-2, Working in progress, 2003.

[7] Enhanced Communication Transport Protocol,
Available from http://ectp.etrirekr, 2003.

[8] ITU-T and ISO/IEC JTCl, "Enhanced
Communication Transport Services," ITU-T
Recommendation X.605 and ISO/IEC International
Standard 13252, 1999.

[9] ITU-T, "Multi-peer Commumnications Framework",
ITU-T Recommendation X.601, March 2000.

[10] S. Koh, et. al., "Configuration of ACK Trees for
Multicast Transport Protocols," ETRI Journal, Vol.
23, No. 3, pp. 111 - 120, September 2001.

889

o %2 8] =i 4] '03-10 Vol.28 No.10B

gk 7| Al(Ki-Shik Park) 2519

19824 A gehstE SAEAD

1985 A ge s ehetel

FICaAsE 42D

s dety

A uhap

wlldeha ojeel 3

Fel Zes wheg

TR

1996'd - Aa) : FAHA7)EAQIATU) ZFSpAHE-
21213] Vice-Chairman, 442 Rak$]¢d
3] Chairman

2001 49 ®A) : el 4el 98 FAAT
WAkl Hrheldd

2002 Q49 HA] . WICHEIRIRE AP AR

19954

| 20034 :

o

1985 WA FFAAFAATY EFATAE
F (BATY)

<FRPo HUEA JlE BES AREA
QoS, el ZREZ, R&D H 7|%
4

g} &= 2 (Juyoung Park) A3

199513 Fdefgta Axlgstat
4 (34D

1997 st El &
(A ARE A

2000 AL e E
(A s AREA D)

L ARAANEADATY EFATAH

<FAEol DEIZE, Qos, B ZREE,
ERRNIEE!

890

2 M ZE (Seok-Joo Koh)

19981

<FHEoR HEPI2E,

19924

199413 :

19981 :

ENED
P IE)
28t 24 B
asled 24
A - Ake1ES D)
aaslpled 24
(b : ARl D)
B4) : PFAAEND
9 BEATAE (4
472D
2ol

e 2E,

QoS, #}¢E 2wz waled gl

= ol & (In-June Jo)
19823

19854

1999

- ‘ 1990

z2 38

A

clgaiatal AREEARE

a3} 23iHb

e AR

3 st EAAAD

olFdiaka A3l et

3} Akl EAHD

s gRAe] s)erkEat

19833 - 1994\ A REA T4 d A7)
19943 3¢ -]« wiANgT PFe]FEHIP

<FAR R AR FA 2

]
sk, A8,

==
HF

B M ES] 3] FHFR),

