DOI QR코드

DOI QR Code

Electron Magnetic Resonance Study of Paramagnetic Impurities in LiTaO3 and LiMbO3 Single Crystals

LiTaO3 및 LiMbO3 단결정 내의 상자성 불순물에 관한 전자 자기공명 연구

  • 염태호 (청주대학교 이공대학 응용과학부)
  • Published : 2003.10.01

Abstract

Electron magnetic resonance (EMR) of paramagnetic Cr$^{3+}$, Mn$^{2+}$, and Fe$^{3+}$ impurity ions in ferroelectric LiNbO$_3$ and LiTaO$_3$ single crystals has been studied. The actual sites location of paramagnetic impurity ions in the crystals was suggested from the experimental results and zero field splitting parameters calculated by superposition model. It turns out that Cr$^{3+}$ ions in LiNbO$_3$ crystal have two resonance centers and enter both the Li$^{+}$ and Nb$^{5+}$ ions. Mn$^{2+}$ and Fe$^{3+}$ impurity ions in LiNbO$_3$ substitute for Nb$^{5+}$ ions. However, both Cr$^{3+}$ and Fe$^{3+}$ ions in LiTaO$_3$ crystal reside at Li$^{+}$ ions.$ +/ ions.+/ ions.

강유전체 물질인 LiNbO$_3$ 및 LiTaO$_3$ 단결정 내에 불순물로 첨가되어 있는 상자성 전이원소인 Cr$^{3+}$ , $Mn^{2+}$, Fe$^{3+}$ 이온에 관한 전자 자기공명 연구를 하였다. 이들 두 단결정 내에 들어있는 불순물 이온에 대하여 중첩모델을 써서 계산한 영자기장 갈라지기 상수의 값을 실험에서 얻은 영자기장 갈라지기 값 및 기존에 보고된 많은 연구 논문과 비교 분석하여 상자성 불순물이 결정 내의 어느 자리를 치환하고 들어가는지를 연구하였다. LiNbO$_3$ 단결정 내의 Cr$^{3+}$ 이온이 불순물로 들어 갈 경우에는 두 가지 공명 중심이 가능하며, Li$^{+}$ 및 Nb$^{5+}$이온 자리를 각각 치환하고 들어간다. 또한 LiNbO$_3$ 결정 내의 $Mn^{2+}$ 및 Fe$^{3+}$ 이온의 경우에는 두 이온 모두 Nb$^{5+}$ 이온 자리를 치환하고 들어간다. LiTaO$_3$ 단결정 내에 불순물로 들어가 있는 Cr$^{3+}$ 및 Fe$^{3+}$ 이온은 모두 Li$^{+}$ 이온 자리를 치환하고있는 것으로 나타났다.

Keywords

References

  1. Solid State Technology D.W.Rudd;A.A.Ballman
  2. J. Am. Ceram. Soc. v.48 A.A.Ballman https://doi.org/10.1111/j.1151-2916.1965.tb11814.x
  3. J. Phys. Chem. Solids v.28 S.C.Abrahams;J.L.Bernstein https://doi.org/10.1016/0022-3697(67)90142-4
  4. J. Crystal Growth v.51 S.Matsumura https://doi.org/10.1016/0022-0248(81)90006-3
  5. J. Crystal Growth v.256 H.Chen;H.Xia;J.Wang;J.Zhang;J.Xu;S.Fan https://doi.org/10.1016/S0022-0248(03)01361-7
  6. Soviet Phys. Solid State v.27 G.I.Malovichko;V.G.Grachev
  7. Ferroelectrics v.92 M.D.Glinchuk;G.I.Malovichko;I.P.Bykov;V.G.Grachev
  8. Radiat. Eff. and Defects in Solids v.119 C.R.A.Catlow;A.V.Chadwick;M.Cole;S.M.Tomlinson https://doi.org/10.1080/10420159108220781
  9. Solid State Commun. v.83 C.Prieto;C.Zaldo https://doi.org/10.1016/0038-1098(92)90034-7
  10. Chinese J. Phys. v.23 S.H.Choh;E.K.Kim;S.S.Park;J.N.Kim
  11. Rep. Progr. Phys. v.52 D.J.Newman;B.Ng https://doi.org/10.1088/0034-4885/52/6/002
  12. Phys. Rev. v.76 B.T.Matthias;J.P.Remeika
  13. J. Phys. Chem. Solids v.28 S.C.Abrahams;J.L.Bernstein https://doi.org/10.1016/0022-3697(67)90176-X
  14. J. Phys. Chem. Solids v.34 S.C.Abrahams;E.Buehler;C.Hamilton;S.J.Laplaca https://doi.org/10.1016/0022-3697(73)90047-4
  15. J. Chem. Phys. Solids v.27 S.C.Abrahams;J.M.Reddy;J.L.Bernstein https://doi.org/10.1016/0022-3697(66)90072-2
  16. Phys. Stat. Sol. v.81 C.Y.Chen;K.L.Sweeney;L.E.Halliburton https://doi.org/10.1002/pssa.2210810127
  17. Acta Crystallogr. v.B42 S.C.Abrahams;P.Marsh https://doi.org/10.1107/S0108768186098683
  18. Topics in Applied Physics v.61 Photo-refractive Materials and Their Applications E.Kratzig;O.F.Schimer;P.Gunter(ed.);J.P.Huingnard(ed.) https://doi.org/10.1007/3-540-18332-9_32
  19. Magn. Reson. Rev. v.13 C.Rudowicz
  20. Magn. Reson. Rev. v.13 Erratum C.Rudowicz https://doi.org/10.1063/1.1671234
  21. J. Chem. Phys. v.50 A.M.Glass https://doi.org/10.1063/1.1671234
  22. J. Korean Phys. Soc. v.15 J.N.Kim;H.L.Park
  23. Sov. Phys. Solid State v.25 G.I.Malovichko;A.A.Karmazin;I.P.Bykov;V.V.Laguta;V.P.Yarunichev
  24. J. Korean Phys. Soc. v.32 T.H.Yeom;S.H.Choh https://doi.org/10.1063/1.1673065
  25. J. Chem. Phys. v.52 D.G.Rexford;Y.M.Kim;H.S.Story https://doi.org/10.1088/0953-8984/5/34/009
  26. J. Phys.: Condens. Matter v.5 Y.M.Chang;T.H.Yeom;Y.Y.Yeung;C.Rudowicz https://doi.org/10.1016/0038-1098(93)90485-6
  27. Solid State Commun. v.87 T.H.Yeom;Y.M.Chang;C.Rudowicz;S.H.Choh https://doi.org/10.1016/0038-1098(93)90485-6
  28. Phys. Lett. v.27A T.Takeda;A.Watanabe;K.Sugihara
  29. Sov. Phys. Solid State v.10 M.P.Petrov https://doi.org/10.1002/pssb.2221850212
  30. Phys. stat. sol.(b) v.185 T.H.Yeom;S.H.Choh;Y.M.Chang;C.Rudowicz https://doi.org/10.1016/0038-1098(72)90055-5
  31. Solid State Comm. v.10 J.B.Herrington;B.Dischler;J.Schneider https://doi.org/10.1063/1.1678725
  32. J. Chem. Phys. v.57 D.G.Rexford;Y.M.Kim https://doi.org/10.1007/BF00348379
  33. Appl. Phys. v.A51 H.Feng;J.Wen;H.Wang;H.Wang https://doi.org/10.1088/0953-8984/2/32/017
  34. J. Phys.: Condens. Matter v.2 A.Boker;H.Donnerberg;O.F.Schimer;F.Xiqi https://doi.org/10.1063/1.322139
  35. J. Appl. Phys. v.46 W.Keune;S.K.Date;I.Dezsi;U.Gonser https://doi.org/10.1002/pssb.2221850211
  36. phys. stat. sol.(b) v.185 T.H.Yeom;Y.M.Chang;S.H.Choh;C.Rudowicz https://doi.org/10.1103/PhysRevB.49.12556
  37. Phys. Rev. v.B49 M.G.Zhao;M.Chiu https://doi.org/10.1107/S0108768186098567
  38. Acta Crystallogr. v.B42 S.C.Abraham;P.Marsh
  39. J. Magnetic Resonance v.63 C.Rudowicz https://doi.org/10.1088/0022-3719/16/35/016
  40. J. Phys. C: Solid State Phys. v.16 K.A.Muller;W.Berlinger https://doi.org/10.1088/0022-3719/16/35/016
  41. J. Korean Phys. Soc. v.27 S.W.Ahn;J.S.Kim;S.H.Choh;T.H.Yeom https://doi.org/10.1103/PhysRevB.43.11374
  42. Phys. Rev. v.B43 Y.Y.Zhao https://doi.org/10.1016/0038-1098(92)90212-R
  43. Solid State Commun. v.84 V.K.Jain https://doi.org/10.1103/PhysRevB.19.109
  44. Phys. Rev. v.B19 E.Siegel;K.A.Muller
  45. Electron Magnetic Resonance of the Solid State M.Heming;G.Lehmann;J.A.Weil(ed.) https://doi.org/10.1088/0953-8984/1/23/004
  46. J. Phys.: Condens. Matter v.1 H.Sothe;L.G.Rowan;J.W.Spaeth https://doi.org/10.1063/1.438182
  47. J. Chem. Phys. v.71 J.O.Rubio;H.S.Murrieta;G.S.Aguilar https://doi.org/10.1016/0301-0104(86)80014-3
  48. Chem. Phys. v.102 C.Rudowicz https://doi.org/10.1016/0301-0104(86)80014-3