Optimization of Radiator Position in an Internally Radiating Photobioreactor: A Model Simulation Study

  • Suh, In-Soo (Department of Chemical Engineering, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Sun-bok (Department of Chemical Engineering, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Published : 2003.10.01

Abstract

This study focused on the optimization of the illumination method for efficient use of light energies in a photobioreactor. In order to investigate the effect of radiator position, a model simulation study was carried out using Synechococcus sp. PCC 6301 and an internally radiating photobioreactor as a model system. The efficiency of light transfer in a photobioreactor was analyzed by estimating the average light intensity in a photobioreactor. The simulation result, indicate that there exists an optimal position of internal radiators, and that the optimal position varies with radiator number and cell concentration. When light radiators are placed at the optimal position, the average light intensity is about 30% higher than that obtained by placing radiators at the circumstance or center of a photobioreactor. The method presented in this work may be useful for improving light transfer efficiency in a photobioreactor.

Keywords

References

  1. Biotechnol. Bioeng. v.55 A model for light distribution and average solar irradiance inside outdor tubular photobioreactors for microalgal mass culture Acien Fernandez, F.G.;F. Garcia Camacho;J.A. Sanchez Perez;J.M.Fernandez Sevilla;E. Molina Grima https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<701::AID-BIT1>3.0.CO;2-F
  2. J. Phycol. v.4 Simple conditions for growth of unicellular blue-green algae Allen,M.M.
  3. Biotechnol. Bioeng. v.40 A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics Cornet,J.F.;C.G.Dussap;G.Dubertret https://doi.org/10.1002/bit.260400709
  4. Chem. Eng. Sci. v.50 A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors Cornet,J.F.;C.G.Dussap;J.B.Gros https://doi.org/10.1016/0009-2509(95)00022-W
  5. Chem. Eng. Process v.38 Design of a photo-bioreactor for modeling purposes Csogor,Z.;M.Herrenbauer;I.Perner;K.Schmidt;C.Posten https://doi.org/10.1016/S0255-2701(99)00048-3
  6. Biotechnol. Bioeng. v.35 A macromodel for outdoor algal mass production Guterman,H.;A.Vonshak;S.Ben-Yaakov https://doi.org/10.1002/bit.260350809
  7. J. Biosci. Bioeng. v.81 Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collecting device Hirata,S.;M.Hayashitani;M.Taya;S.Tone
  8. Solar Energy v.20 A model for solar radiation conversion to algae in shallow pond Incropera,F.P.;J.F.Thomas https://doi.org/10.1016/0038-092X(78)90189-5
  9. Biotechnol. Bioeng. v.38 High-density photoautotrophic algal cultures: Design, construction and operation of a novel photobioreactor system Javanmardian,J.;B.O.Palsson https://doi.org/10.1002/bit.260381010
  10. Biotechnol. Bioprocess Eng. v.6 A theoretical consideration on oxygen production rate in microalgal cultures Kim,N.J.;C.G.Lee https://doi.org/10.1007/BF02933005
  11. J. Microbiol. Biotechnol. v.12 Simple monodimensional model for linear growth rate of photosynthetic microorganisms in flat-plate photobioreactors Kim,N.J.;I.S.Suh;B.K.Hur;C.G.Lee
  12. Biotechnol. Bioeng. v.44 High-density algal photobioreactors using light-emitting diodes Lee,C.G.;B.O.Palsson https://doi.org/10.1002/bit.260441002
  13. Biotechnol. Bioprocess Eng. v.4 Calculation of light penetation depth in photobioreactors Lee,C.G. https://doi.org/10.1007/BF02931920
  14. Biotechnol. Bioeng. v.29 Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis Lee,H.Y.;L.E.Erickson;S.S.Yang https://doi.org/10.1002/bit.260290705
  15. J. Microbiol. Biotechnol. v.11 $CO_2$ fixation by Chlorella KR-1 using flue gas and its utilization as a feedstuff for chicks Lee,J.S.;D.K.Kim;J.P.Lee;S.C.Park;J.H.Koh;S.J.Oh
  16. Appl. Biochem. Biotechnol. v.28;29 Glutamate production from $CO_2$ by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers Matsunaga;T.;H.Takeyama;H.Sudo;N.Oyama;S.Ariura;H.Takano;M.Hirano;J.G.Burgess;K.Sode;N.Nakamura
  17. Photoinhibition Algal photoinhibition and photosynthesis in the aquatic environment Neale,P.J.;D.J.Kyle(ed.);C.B.Osmond(ed.);C.J.Arntzen(ed.)
  18. J. Ferment. Bioeng. v.80 Kinetic study on light-limited batch cultivation of photosynthetic cells Ogbonna,J.C.;H.Yada;H.Masui;H.Tanaka https://doi.org/10.1016/0922-338X(95)90826-L
  19. J. Ferment. Bioeng. v.82 A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells Ogbonna,J.C.;H.Yada;H.Masui;H.Tanaka https://doi.org/10.1016/0922-338X(96)89456-6
  20. J. Microbiol. Biotechnol. v.11 Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths Park,E.K.;C.G.Lee
  21. Biotechnol. Bioprocess Eng. v.5 Optimization of algal photobioreactors using flashing lights Park,K.H.;C.G.Lee https://doi.org/10.1007/BF02936592
  22. J. Chem. Tech. Biotechnol. v.33B A tubular bioreactor for photosynthetic production of biomass from carbon dioxide, design and performance Pirt,S.J.;Y.K.Lee;M.R.Walach;M.W.Pirt;H.H.M.Baluzi;M.J.Bazin
  23. Algal Biotechnology Photobioreactors for the axenic mass cultivation of microalgae Pohl,P.;M.Kohlhase;M.Martin;T.Stadler(ed.);J.Mollion(ed.);M.C.Verdus(ed.);Y.Karamanos(ed.);H.Morvan(ed.);D.Christiaen(ed.)
  24. Bioreactor System Design Photobioreactors Prokop,A.;L.E.Erickson;J.A.Asenjo(ed.);J.C.Merchuk(ed.)
  25. Biotechnol. Bioeng. v.4 Mean light intensity - a useful concept in correlating growth rates of dense cultures of microalgae Rabe,A.E.;R.J.Benoit https://doi.org/10.1002/bit.260040404
  26. J. Appl. Phycol. v.4 Performance of a flat plate, air-lift reactor for the growth of hight biomass algal cultures Ratchford,I.A.J.;H.J.Fallowfield https://doi.org/10.1007/BF00003954
  27. Stud. Surf. Sci. Catal. v.114 Cultivation of cyanobacteria in various types of photobioreactors for biological $CO_2$ fixation Suh,I.S.;C.B.Park;J.K.Han;S.B.Lee https://doi.org/10.1016/S0167-2991(98)80798-2
  28. J. Appl. Phycol. v.13 Cultivation of cyanobacterium in an internally radiating air-lift photobioreactor Suh,I.S.;S.B.Lee https://doi.org/10.1023/A:1017979431852
  29. Biotechnol. Bioeng. v.82 A light distribution model for an internally radiating photobioreactor Suh,I.S.;S.B.Lee https://doi.org/10.1002/bit.10558
  30. Appl. Biochem. Biotechnol. v.43 Increased coccolith production by Emiliania huxleyi cultures enriched with dissolved inorganic carbon Takano,H.;R.Takei;E.Manabe;J.G.Burgess;M.Hirano;T.Matsunaga
  31. J. Appl. Phycol. v.4 From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms Tredici,M.R.;R.Materassi https://doi.org/10.1007/BF02161208
  32. J. Appl. Phycol. v.4 Vat incubator with immersion core illumination - a new, inexpensive setup for mass phytoplankton culture Wohlgeschaffen,G.D.;D.V.Subba Rao;K.H.Mann https://doi.org/10.1007/BF00003957