DOI QR코드

DOI QR Code

Proposition of Improved Semi-Analytical Relationship considering Response Characteristics of Buried Pipeline

지중매설관로의 거동특성을 반영한 개선된 해석적 관계식의 제안

  • 김태욱 (한국철도기술연구원 궤도·구조 연구그룹) ;
  • 임윤묵 (연세대학교 공과대학 사회환경·시스템공학부 토목전공) ;
  • 김문겸 (연세대학교 공과대학 사회환경·시스템공학부 토목전공)
  • Published : 2003.10.01

Abstract

Response analysis of buried pipeline subjected to permanent ground deformation(PGD) due to liquefaction is mainly executed by use of numerical analysis or semi-analytical relationship, Especially for the semi-analytical relationship considering transverse PGD, it has somewhat limited applicability : since it has different formula according to the width of PGD and does not reflect various patterns of PGD which is caused by the decrease of soil stiffness, Therefore, in this study, the applicability of existing analytical relationship is closely investigated through the comparison of FEM results at first. And then, based on meaningful contemplation, improved analytical relationship is proposed. The proposed one models the system behavior of buried pipeline as the combination of cable and beam, and thus it is applicable to arbitrary width of PGD, Moreover, it does reflect various patterns of PGD by introducing interaction pattern coefficient. Through the comparison of numerical results using the FEM and the proposed analytical relationship, rational applicability is objectively verified and noticeable considerations are discussed, Moreover, analyses considering the change of PGD magnitude and patterns are performed.

지진 발생시 매립지반과 같은 연약지반에 위치하게 되는 지중매설관로는 액상화-영구지반변형에 의해 심각한 규모의 구조적인 손상이 발생할 수 있는 특징을 가지고 있다. 이 경우 매설관로의 거동특성 해석은 수치모형 및 해석적 관계식의 적용을 통해 주로 수행되는데, 특히 횡방향 지반변형을 받는 지중매설관로에 대한 해석적 관계식의 경우. 횡방향 지반변형의 폭에 따라서 해석적 관계식 자체가 이원화되는 단점을 가지고 있는 동시에 액상지반의 특징인 지반강성의 감소로 야기되는 다양한 지반변형의 형상을 반영하지 못하는 단점을 가지고 있다. 그러므로 본 연구에서는 먼저 기존의 해석적 관계식을 개략적으로 살펴본 후, 유한요소 해석과의 비교를 통해 기존의 해석적 관계식이 가지고 있는 적용적 한계성을 검토하였으며, 전체적인 매설관로의 거동을 케이블과 빔의 조합된 형태로 고려하고 지반변형의 다양한 형상을 대변하는 상호작용 형상계수를 도입함으로써 지반변형의 폭과 무관하게 적용될 수 있는 동시에 다양한 지반변형의 형상을 반영할 수 있는 개선된 형태의 해석적 관계식을 제안하였다. 제안된 해석식의 합리적 적용성과 객관적 타당성을 검증하기 위해 지반변형의 크기와 형상 변화에 따른 수치해석을 수행하고 이를 유한요소 해석결과와 비교하였으며, 지반변형의 크기 및 형상변화에 따른 매설관의 거동특성 변화 및 그 의의를 분석하였다.

Keywords

References

  1. O'Rourke, T. D., Grigoriu, M. D., and Khater, M.M., “A State of the Art Review: Seismic Response of Buried Pipelines,” Decade of Progress in Pressure Vessel Technology, ASME, 1985.
  2. O'Rourke, T. D., “Critical Aspects of Soil-Pipeline Interaction for Large Ground Deformation,” Proceedings of the First Japan-U.S. Workshop on Liquefaction, Large Ground Deformation and Their Effets on Lifeline, Technical Report, 1988, pp. 118-126.
  3. 김태욱, 임윤묵, 김문겸, “지중매설관로의 거동특성 해석을 위한 관.지반 상호작용력의 산정,” 지진공학회 논문집, Vol., No., 2003, pp. https://doi.org/10.5000/EESK.2003.7.3.057
  4. O'Rourke, M. J. and Liu, X., “Response of Buried Pipelines subject to Earthquake Effects,” MCEER Monograph No. 3, 1999. pp. 77-87.
  5. Hamada, M. and O'Rourke, T. D., “Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes,” Technical Report, NCEER-92-0001, Vol. 1, 1992.
  6. Hamada, M., Yasuda, S., and Emoto, K., “Study on Liquefaction Induced Permanent Ground Displacements,” Association for the Development of Earthquake prediction, Japan, 1986, 87 pp.
  7. O'Rourke, M. J., “Approximate Analysis Procedures for Permanent Ground Deformation Effects on Buried Pipelines,” Proceedings from the Second Japan-U.S. Workshop on Liquefaction, Large Ground Deformation and Their Effets on Lifeline, Technical Report NCEER-89-0032, 1989, pp. 336-347.
  8. Committee on Gas and Liquid Fuel Lifelines, Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, ASCE, New York, 1984.
  9. O'Rourke, M. J. and Nordberg, G., “Analysis Procedures for Buried Pipelines Subject to Longitudinal and Transverse Permanent Ground Deformation,” Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report NCEER-91-0001, 1991, pp. 439-453.
  10. Bardet, J. P., Mace, N., and Tobit, T., “Liquefaction-induced Ground Deformation and Failure,” Technical Report to PEER/PG&E, University of Southern, 1999.
  11. Bartlett, S. F. and Youd, T. L., “Empirical Prediction of Liquefaction-Induced Lateral Spread,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 4, 1995, pp. 316-327. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(316)
  12. Baziar, M., “Engineering Evaluation of Permanent Ground Deformation Due to Seismically-Induced Liquefaction,” Dissertation for Ph.D. in Civil Engineering, Rensselaer Polytechnic Institute, 1991, 27 pp.
  13. 김문겸, 임윤묵, 김태욱, “횡방향 영구지반변형에 대한 지중 매설관로의 해석모형 및 거동특성에 대한 연구,” 대한토목학회 논문집, 제22권, 제3-A호, 2002, pp. 519-531.
  14. Ishihara, K., Taguchi, Y., and Kato, S., “Experimental Study on Behavior of the Boundary between Liquefied and Non-liquefied Ground,” Proceedings from the Third Japan-U.S. Workshop on Liquefaction, Large Ground Deformation and Their Effets on Lifeline, Technical Report NCEER-92-0032, 1992, pp. 639-653.
  15. Takada, S., Tanabe, K., Yamajyo, K., and Katagiri, S., “Liquefaction Analysis for Buried Pipelines,” Proceedings of the Third International Conference on Soil Dynamics and Earthquake Engineering, 1987.
  16. Takada, S. and Tanabe, K., “Estimation of Earthquake Induced Settlements for Lifeline Engineering,” Proceedings of the Ninth Conference Earthquake Engineering, Vol. 7, 1988, pp. 109-114.
  17. Yoshida, T. and Uematsu, M., “Dynamic Behavior of a Pile in Liquefaction Sand,” Proceedings of the Fifth Japan Earthquake Engineering Symposium, 1978, pp. 657-663.(in Japanese)
  18. Matsumoto, H., Sasaki, Y., and Kondo, M., “Coefficient of Subgrade Reaction on Pile in Liquefied Ground,” Proceedings of the Second National Conference on Soil Mechanics and Foundation Engineering, 1987, pp. 827-828.(in Japanese)
  19. Yasuda, S., Saito, K., and Suzuki, N., “Soil Spring Constant on Pile in Liquefied Ground,” Proceedings of the 19th JSCE Conference on Earthquake Engineering, 1987, pp. 189-192.(in Japanese)
  20. 일본가스협회, “가스도관내진설계지침”, 1982.
  21. 일본수도협회, “수도시설내진공법지침.해설”, 1997.