_ THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA Vol.22, No.1E 2003, 3. pp. L1~ 18

Exterior Acoustic Holography Reconstruction of a
Tuning Fork Using Inverse Non-singular BEM

Soon—Suck Jarng”
*Dept. of Information Control & Instrumentation, Chosun University, Korea
{(Received September 13 2003; accepted February 18 2003)

Abstract

Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then
used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field

pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in

forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed

with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used for the
initial extetior pressures which are at first calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique
it used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork
with 128.4 Hz resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).
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|. Introduction

Electro-mechanical devices such as motor and engine
generate sound with noise. Unless the noise-like sound is
non-stationary, it is possibly easier to find where is the
orgin of the noise sound. The stationary noise source may
bz pointed out by an acoustic holographic technique in
which an ammay of microphones measure the sound pressure
field in three dimensions surrounding an interesting noise
radiating object in order to geometrically analyze the
pasition of the noise source. The acoustic holographic
technique may be approached by either Spatial Fourier
Transformation (SFT)[1,2] or Inverse Boundary Element
Method (BEM)[3,4]. In both approaches, spatial sound
pressures of a single frequency are measured known
complex values and the target of the acoustic holography
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is to calculate either the unknown surface pressure or the
normal velocity of the specimen. Then the near or far filed
sound pressure may be recalculated, so as to reconstruct
the original 3 dimensional sound pressure field. This
paper presents an inverse non-singular BEM technique for
the acoustic holographic analysis. The sound radiating
object is a tuning fork. The analysis is done in 3
dimensions. In order to simulate the acoustic holography
with the neglect of the measurement signal noise of the
spatial sound pressure, the forward BEM supplied the
three dimensional sound field pressures as the initialty
known compiex values.

[l. Numerical Methods

2.1. Finite Element Method (FEM)

The following equation (1) is the integral formulation
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Figure 1. Three dimensional guadratic hexahedral 20 nodes
element.

of the FEM elastic equations:
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The isoparametric formulation for 3-dimensional struc-
tural elements is well documented by Allik H. et. al.[5].
Each 3-dimensional finite element is composed of 20
quadratic nodes and each node has nodal displacement
(as, a,, a,) variables. In local coordinates the finite
element has 6 surface planes (Xxy, *yz, Lt zx) which
may be exposed to external air environment. The exposed
surface is used as a boundary element which is composed
of 8 quadratic nodes.

2.2. Boundary Element Method (BEM)

The boundary element solution of sound pressure
intensity is very useful to analyze the sound radiation of
vibrating devices; intensity, directivity pattern and noise
control elements. For sinusoidal steady-state problems, the
Helmholtz equation, v ¥+ k2% = ( represents the fluid
mechanics. & is the acoustic pressure with time variation,
2’ In order to solve the Helmholtz equation in an
infinite air media, a solution to the equation must not only
satisfy structural surface boundary condition (BC),
¥/ dn=pseta, but also the radiation condition at

infinity, lim s (a%/0r + jk¥)?dS=0. 3/3n. represents

differentiation along the outward normal to the boundary,
The Helmholtz integral equation derived from Green’s

12 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA Vol.22, No.1E

second theorem provides such a solution for radiating

pressure waves;

f ‘P(?)%i]-%@,q)%-}}ﬁq-ﬁ[p} w(p) (2)
where Gilog=e™/7ram , relp-q

p is any point in either the interior or the exterior and
q is the surface point of integration. 8 (p) is the exterior
solid angle at p.

The acoustic pressure for the ;* global node, @(p;),
is expressed in discrete form[6]: (1 < { < ng)
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where nt is the total number of surface elements and a,, ;
are three dimensional displacements.

Equation (3b) is derived from equation (3a) by
discretizing integral surface. And equation (3¢) is derived
from equation (3b) since an acoustic pressure on an
integral surface is interpolated from adjacent 8 quadratic
nodal acoustic pressures corresponding the integral
surface. Then equation (3d) is derived from equation (3¢)
by swapping integral notations with summing notations.
Finally the parentheses of equation (3d) is expressed by
upper capital notations for simplicity.

When equation (3e) is globally assembled, the discrete
Helmholtz equation can be represented as
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where [A] and [B] are square matrices of (ng by ng) size.



ng is the total number of surface nodes.

When the impedance matrices of equation (4), [A] and
[B], are computed, two types of singularity arise[7]. One
is that the Green's function of the equation, Gu(p;, ¢},
becomes infinite as q approaches to p;. This problem is
solved by mapping such rectangular local coordinates mto
triangular local coordinates and again into polar local
coordinates[8). The other is that at certain wave number
the matrices become ill-conditioned. These wave number
are corresponding to eigenvalues of the interior Dirichlet
problem[9). One approach to overcome the matrix singu-
larity is that [A] and [B] of equation (4) are modified to
provide a unique solution for the entire frequency range
[10-13]. The modified matrix equation referred to as the
modified Helmholtz gradient formulation (HGF)[13] 1s
obtained by adding a multiple of an extra integraf equation
tc equation (4).

(- Al dlche}+p 02 (BloalD)a} ©)
i

where a= k- (Number of surface element adiacent a swrface node)
[C] and [D] are rectangular matrices of (nt by ng) size.

€3 symbol indicates that the rows of [C], [D] correspond-
ing to surface elements adjacent a surface node are added
to the row of [A], [B] corresponding to the surface node,
that is,
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where S(i) is the number of surface element adjacent a
surface node. The derivation of the extra matrices [C), [D]
are well described by Francis D.T.L{13). Equation (6) may
be: reduced in its formulation using superscript @ for

convenience;
4Bleep f"-’zB&){a} ()
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Equation (7) can be writien as

v po?(40] 50 @®)

Since the present acoustic vibrator produces displace-
ment data {q} at a natural frequency, the surface pressure
{¥} of the ning fork is calculated from equation (8).
Once {aq} and {¥} are known, the acoustic pressure in
the far field is determined by A(p)=1 of equation (2} for
given values of surface nodal pressure and surface nodal
displacement;
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2.3. Pseudo Inverse BEM

Previously mentioned forward BEM solves unknown
near/far field acoustic pressures once the surface
displacement vector and the surface pressure scalar of the
vibrating tuning fork are known. Equation (8) calculates
the surface pressures from the given 3 dimensional surface
displacement vectors which are supplied by the FEM
equation (1). Therefore the finally calculated near field
acoustic pressures derived by equation {9) may be
indirectly used as if initially measured sound pressures for
the acoustic holographic approach. These calculated near
field acoustic pressures are notified as an original (initial)
input sound pressures, The number of the original input
sound pressures are taken as the same as the number of
unknown surface pressures, that is, the number of the
surface nodes (ng).

Now the next step is to inversely find the unknown
surface pressure or surface displacement from the known
near filed sound pressure. Equation (3) as well as the
following equations (3~9) are modified, so that the dis-
placement vector is changed to the normal displacement
scalar. It ensures that A® and B® have the same matrix
sizes as ng by ng.

}= +pfw2[4@)_139{%} (105

Equation (9) can be reformulated as

4 fe}s 31{%}' {'*'f} (11)
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Figure 2. Three dimensional near field original sound pressure
positions.

And if equation (10) is added into equation (1),
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(12)

Equation (12) is solved by pseudo inverse matrix
technique which is derived by singular value decompo-
sition (SVD) since the coefficient matrices of equation
(12) have complex values. If the SVD of G matrix is
UAW?, then

el | (13)

The size of G matrix is ng by ng. If more than ng near
filed sound pressures are supplied, then the number of
rows in G matrix is more than the number of columns in
G matrix.” Even though G becomes rectangular matrix,
equation (13) can be still solved because the SVD provide
singular values from the highest order.

lll. Results

3.1. Tuning Fork FEM Application

The FEM is applied to the analysis of the tuning fork.
Figure 3 shows 3 dimensional tuning fork FEM elements
and Table 1 shows the material properties of the air and
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Figure 3. Three dimensional tuning fork FEM elements. Length
=152.4 [mm), Width=254 {mm], Material=Steel {4130).

Table 1. Material Properties.

Density {0 ) | Young's Modukss | Poisson Ratio -
. (Kgim®) | ® [N/m®) (v) -
Air 1.22 1.411E5 -
Steel 7822.9 2.0684E11 .30

the steel.

The tuning fork has the first modal frequency at 128.4
Hz. Figure 5 shows the 3 dimensional modal shape at the
first mode.

3.2. Tuning Fork Forward BEM Application

The surface pressure of the tuning fork is calculated by
equation (8) from the given surface displacement provided
by the FEM eigenvectors. Then the so-called original near
field acoustic pressures in 3 dimensions are calculated by
equation (9) at the same first modal frequency, 128.4 Hz.
Figure 6 shows the directivity pattern of the tuning fork
in 2 dimensions’ view. And Figure 7 shows the directivity
pattemn of the tuning fork in 3 dimensions.

3.3. Tuning Fork Pseudo Inverse BEM Application

Only normal surface displacements are considered in the
pseudo inverse BEM. The normal surface displacement of
the tuning fork is calculated by equation (13) from the
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Figure 4. Tuning fork dimensions,

Fiuure 5. Modal shape of tuning fork {Color=Von Mses Stress}
at 128.4 Hz {1* mode).

Figure 7. Beam pattern of tuning fork in 3 dimensions.

180

Beam Pattern (Linear Scale)

Figure 6. Beam pattern of tuning fork in 2 dimensions.

supplied exterior near field acoustic pressures which are
complex values. Then The surface pressure of the tuning
fork is calculated by equation (10). Figure 8 (a) and (b)
show the real and the imaginary surface pressures of the
tuning fork respectively. The blue continuous lines
indicate the original surface pressure of the tuning fork
derived by equation (8) while the red dotted lines indicate
the recalculated surface pressure of the tuning fork derived
by equation (10).

And figure 9 shows the 3 dimensional deformed shape
of the tuning fork drawn from the recalcuiated normal
surface displacement. It should be noted that the overall
deformed shape of the tuning fork is quite similar to that
of the originally displaced tuning fork, that is, the two ends
of the bars are significantly deformed in +Z and -Z axes
directions. The main difference between figure 9 and
figure S is that the inner surfaces of the tuning fork ends
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Figure 8. The real (a) and the imaginary (b) surface pressures of the tuning fork. The blue continuous lines = Original surface
pressure, The red dotted lines = Recalculated surface pressure.

Figure 9. Three dimensional deformed shape of the tuning fork (a)

drawn from the recalculated normal surface dis-
ptacement (Cotor=Von Mises Stress).

have much smaller displacements than the outer surfaces
of the tuning fork ends.
Figure 10 (a) and (b) show the real and the imaginary

near field sound pressures of the tuning fork respectively.

The blue continuous lines indicate the original near field
pressure of the tuning fork while the red dotted lines

indicate the reconstructed near field pressure of the tuning

fork. Both original and reconstructed near field pressures
are almost perfectly agreed each other. {b)

Figure 11 shows the reconstructed directivity pattem of Figure 10. The real (a} and the imaginary {b) near field acoustic
the tuning fork in 3 dimensions. pressures of the tuning fork. The blue continuous
lines = Original near field pressure, The red dotted

lines = Reconstructed near field pressure.
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F'gure t1. Reconsiructed beam pattern of tuning fork in 3
dimensions,

IV. Conclusion

Non-singular BEM codes are developed in acoustics
application. The BEM code is then used to calculate
unknown boundary surface normal displacements and
surface pressures from known exterior near field pressures.
And then the calculated surface normal displacements and
surface pressures are again applied to the BEM in forward
i order to calculate reconstructed field pressures. The
initial exterior near field pressures are very well agreed
with the later reconstructed field pressures. The next study
would be adding noise effects to the original sound field
pressures and adding more number of exterior sound field
pressures to overcome noise-induced measurements.

Symbol Notification

{“q} Applied Mechanical Force
{”} Elastic Displacement

[]  Elastic Stiffaess Matrix
{M] Mass Matrix

@ Angular Frequency

e Fluid (Air) Density

an Normal Displacement on the Structural Surface
k Wave Number (= w/c)
Sound Speed in Air; 340 [m/sec]
ng Number of Surface Nodes
nt Number of Surface Elements
{a) Displacement Vector on the Structural Surface
¥}  Pressure Vector on the Structural Surface
{®;} Near Field Pressure Vector
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