A Bombyx mori Transcription Factor, ATFC Binds Directly to the UPRE of Molecular Chaperones

  • Goo, Tae-Won (Department of Sericulture and Entomology, The National Institute of Agriculture Science and Technology, R. D. A.) ;
  • Yun, Eun-Young (Department of Sericulture and Entomology, The National Institute of Agriculture Science and Technology, R. D. A.) ;
  • Kim, Sung-Wan (Department of Sericulture and Entomology, The National Institute of Agriculture Science and Technology, R. D. A.) ;
  • Park, Kwang-Ho (Department of Sericulture and Entomology, The National Institute of Agriculture Science and Technology, R. D. A.) ;
  • Hwang, Jae-Sam (Department of Sericulture and Entomology, The National Institute of Agriculture Science and Technology, R. D. A.) ;
  • Kwon, O-Yu (Department of Anatomy, College of Medicine, Chungnam National University) ;
  • Kang, Seok-Woo (Department of Sericulture and Entomology, The National Institute of Agriculture Science and Technology, R. D. A.)
  • Published : 2003.12.01

Abstract

Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). In Saccharomyces cerevisiae, such induction is mediated by the cis-acting unfolded response element (UPRE) which has been thought to be recognized by Hac1p transcription factor. We cloned the ATFC gene showing similarity with Hac1p, and then examined to determine whether ATFC gene product specifically binds to UPRE by electrophoretic mobility shift assays. ATFC gene product displayed appreciable binding ${to ^{32}}P-labelled$ UPRE. Therefore, we concluded that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.

Keywords

References

  1. Chapman, R., C. Sidrauski and P. Walter (1996) Intracellular signaling from the endoplasmic reticulum to the nucleus.Annu. Rev. Cell Dev. Biol. 14, 459-485 https://doi.org/10.1146/annurev.cellbio.14.1.459
  2. Gething, M. J. and J. Sambrook (1992) Protein folding in the cell. Nature 355, 33-45 https://doi.org/10.1038/355033a0
  3. Goo, T. W., E. Y. Yun, J. S. Hwang, S. W. Kang, S. J. Park, K. H. You and O. Y. Kwon (2002) Molecular characterization of a Bombyx mori protein disulfide isomerase (bPDI). Cell Stress Chaperones 7, 118-125 https://doi.org/10.1379/1466-1268(2002)007<0118:MCOABM>2.0.CO;2
  4. Goo, T. W., E. Y. Yun, S. W. Kim, K. H. Choi, J. S. Hwang, O. Y. Kwon and S. W. Kang (2003) Isolation and characteriza-tion of a novel transcription factor ATFC activated by ER stress from Bombyx mori Bm5 cell lines. J. Life Science 13, Inpress
  5. Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211-1233 https://doi.org/10.1101/gad.13.10.1211
  6. Kawahara, T., H. Yanagi, T. Yura and K. Mori (1998) Uncon-ventional splicing of HAC1/ERN4 mRNA required for the unfolded protein response. Sequence-specific and non-sequential cleavage of the splice sites. J. Biot. Chem. 273, 1802-1807 https://doi.org/10.1074/jbc.273.3.1802
  7. Iwawaki, T., A. Hosoda, T. Okuda, Y. Kamigori, C. Nomura-Furuwatari, Y. Kimata, A. Tsuruand and K. Kohno (2001) Translational control by the ER transmembrane kinase/ribo-nuclease IREl under ER stress. Nat. Cell Biol. 3, 158-164 https://doi.org/10.1038/35055065
  8. Mori, K., A. Sant, K. Kohno, K. Normington, M. J. Gethingand J. F. Sambrook (1992) A 22-bp cisacting element is nec-essary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. Eur. Mol. Biol. Org. J. 11,2583-2593
  9. Mori, K. (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451-454 https://doi.org/10.1016/S0092-8674(00)80855-7
  10. Niwa, M., C. Sidrauski, R. J. Kaufman and P. Walter (1999) A role for presenilin-l in nuclear accumulation of Irel frag-ments and induction of the mammalian unfolded protein response. Cell 99, 691-702 https://doi.org/10.1016/S0092-8674(00)81667-0
  11. Patil, C. and P. Walter (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349-356 https://doi.org/10.1016/S0955-0674(00)00219-2
  12. Tirasophon, W., A. A. Welihind and R. J. Kaufman (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/ endoribonuclease (IrelP) in mammalian cells. Genes Dev. 12, 1812-1824 https://doi.org/10.1101/gad.12.12.1812
  13. Urano, F, X. Wang, A. Bertolotti, Y. Zhang, P. Chung, H. P. Harding and D. Ron (2000) Coupling of stress in the ER toactivation of JNK protein kinases by transmembrane protein kinase IREl. Science 287, 664-666 https://doi.org/10.1126/science.287.5453.664
  14. Wang, X. Z., H. P. Harding, Y. Zhang, E. M. Jolicoeur, M. Kuroda and D. Ron (1998) Cloning of mammalian Irel reveals diversity in the ER stress responses. EMBO J. 17, 5708-5717 https://doi.org/10.1093/emboj/17.19.5708
  15. Yoshida, H., T. Matsui, A. Yamamoto, T. Okada and K. Mori (2001) XBPl mRNA is induced by ATF6 and spliced by IREl in response to ER stress to produce a highly active transcription factor. Cell 28, 881-891