DOI QR코드

DOI QR Code

NORM OF THE COMPOSITION OPERATOR MAPPING BLOCH SPACE INTO HARDY OR BERGMAN SPACE

  • Kwon, Ern-Gun (Department of Mathematics Education Andong National University) ;
  • Lee, Jin-Kee (Department of Mathematics Education Andong National University)
  • Published : 2003.10.01

Abstract

Let $1{\;}\leq{\;}p{\;}\infty{\;}and{\;}{\alpha}{\;}>{\;}-1$. If f is a holomorphic self-map of the open unit disc U of C with f(0) = 0, then the quantity $\int_U\;\{\frac{$\mid$f'(z)$\mid$}{1\;-\;$\mid$f(z)$\mid$^2}\}^p\;(1\;-\;$\mid$z$\mid$)^{\alpha+p}dxdy$ is equivalent to the operator norm of the composition operator $C_f{\;}:{\;}B{\;}\rightarrow{\;}A^{p,{\alpha}$ defined by $C_fh{\;}={\;}h{\;}\circ{\;}f{\;}-{\;}h(0)$, where B and $A^{p,{\alpha}$ are the Bloch space and the weighted Bergman space on U respectively.

Keywords

References

  1. Pacific J. Math. v.107 On the behavior near a torus of functions holomorphic in the ball P.Ahern https://doi.org/10.2140/pjm.1983.107.267
  2. Indiana Univ. Math. J. v.36 Bloch functions, BMO, and boundary zeros P.Ahern;W.Rudin https://doi.org/10.1512/iumj.1987.36.36007
  3. The theory of $H ^p$ functions P.L.Duren
  4. Pacific J. Math. v.25 Mean values of power series T.M.Flett https://doi.org/10.2140/pjm.1968.25.463
  5. Bounded analytic functions J.B.Garnett
  6. Proc. Amer. Math. Soc. v.124-125 Composition of Blochs with bounded analytic functions E.G.Kwon
  7. Math. Ann. v.291 Bounded mean oscillations of Bloch pullbacks W.Ramey;D.Ullrich https://doi.org/10.1007/BF01445229
  8. Trigonometric series A.Zygmund

Cited by

  1. Composition operators between Bergman spaces of logarithmic weights vol.26, pp.09, 2015, https://doi.org/10.1142/S0129167X15500688
  2. NORM OF THE COMPOSITION OPERATOR FROM BLOCH SPACE TO BERGMAN SPACE vol.29, pp.3, 2014, https://doi.org/10.4134/CKMS.2014.29.3.409