참고문헌
- Lecture Notes in Economics and Mathematical Systems v.285 Vector variational inequality and vector optimization, Toward Interactive and Intelligent Decision Support Systems G.Y.Chen;G.M.Cheng;Y.Sawaragi(ed.);K.Inoue(ed.);H.Nakayama(ed.) https://doi.org/10.1007/978-3-642-46607-6_44
- Z. Oper. Res. v.34 A vector variational inequality and optimization over an efficient set G.Y.Chen;B.D.Craven
- J. Math. Anal. Appl. v.153 The vector complementary problem and its equivalences with the weak minimal element in ordered spaces G.Y.Chen;X.Q.Yang https://doi.org/10.1016/0022-247X(90)90270-P
- J. Optim. Theory Appl. v.74 Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem G.Y.Chen https://doi.org/10.1007/BF00940320
- J. Optim. Theory. Appl. v.81 Existence and continuity of solutions for vector optimization G.Y.Chen;B.D.Craven https://doi.org/10.1007/BF02193095
- Math. Methods Oper. Res. v.49 Network equilibrium with Vector costs and nonlinear scalarization methods G.Y.Chen;C.J.Goh;X.Q.Yang
- J. Optim. Theory Appl. v.116 Existence of solutions to implicit vector variational inequalities Y.Chiang;O.Chadli;J.C.Yao https://doi.org/10.1023/A:1022472103162
- Vector Variational Inequalities and Vector Equilibria Vector variational inequalities and modelling of a continuum traffic equilirium problem P.Daniele;A.Maugeri;F.Giannessi(ed.)
- Bull. Austral. Math. Soc. v.54 Existence theorems for vector variational inequalities A.Daniilidis;N.Hadjisavvas https://doi.org/10.1017/S0004972700021882
- J. Optim. Theory. Appl. v.93 Simultaneous vector variational inequalities and vector implicit complementarity problem J.Fu https://doi.org/10.1023/A:1022653918733
- J. Math. Anal. Appl. v.22 Proper efficiency and the theory of vector maximization A.M.Geoffrion https://doi.org/10.1016/0022-247X(68)90201-1
- Variational Inequality and Complementarity Problems Theorems of alternative, quadratic program and complementarity problems F.Giannessi;R.W.Cottle(ed.);F.Giannessi(ed.);J.L.Lions(ed.)
- New Trends in Mathematical Programming On Minty variational principle F.Giannessi;F.Giannessi(ed.);S.Komlosi(ed.);T.Rapcsak(ed.)
- Math. Programming v.84 Dual conditions characterizing optimality for convex multi-objective programs B.M.Glover;V.Jeyakumar;A.M.Rubinov https://doi.org/10.1007/s10107980013a
- Vector Variational Inequalities and Vector Equilibria Scalarization methods for vector variational inequality C.J.Goh;X.Q.Yang;F.Giannessi(ed.)
- J. Optim. Theory Appl. v.96 From scalar to vector equilibrium problems in the quasimonotone case N.Hadjisavvas;S.Schaible https://doi.org/10.1023/A:1022666014055
- Convex Analysis and Minimization Algorithms v.Ⅰ-Ⅱ J.B.Hiriart-Urruty;C.Lamarechal
- Mathematical Vector Optimization in Partially Ordered Linear Spaces J.Jahn
- SIAM J. Optim. New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs V.Jeyakumar;G.M.Lee;N.D.Dinh
- J. Global Optim. On the upper semicontinuity wit respect to parameters of solutions to vector quasi-variational inequalities and applications P.H.Khanh;L.M.Luu
- J. Optim. Theory Appl. v.114 Vector variational inequalities involving vector maximal points M.H.Kim;S.H.Kum;G.M.Lee https://doi.org/10.1023/A:1016075029509
- Optim. v.46 On generalized vector quasi-variational inequalities W.K.Kim;K.K.Tan https://doi.org/10.1080/02331939908844451
- J. Math. Anal. Appl. v.206 On the generalized vector variational inequality problem I.V.Konnov;J.C.Yao https://doi.org/10.1006/jmaa.1997.5192
- Appl. Math. Lett. v.16 An existence result for implicit vector variational inequality with multifunctions S.H.Kum;G.M.Lee;J.C.Yao https://doi.org/10.1016/S0893-9659(03)00019-3
- Taiwanese J. Math. v.6 Remarks on implicit vector variatinal inequalities S.H.Kum;G.M.Lee https://doi.org/10.11650/twjm/1500558302
- J. Korean Math. Soc. v.33 Generalized vector-valued variational inequalities and fuzzy extension B.S.Lee;G.M.Lee;D.S.Kim
- Appl. Math. Lett. v.12 A vector version of Minty's lemma and application B.S.Lee;G.M.Lee
- Appl. Math. Lett. v.6 Generalized vector variational inequality and fuzzy extension G.M.Lee;D.S.Kim;B.S.Lee;S.J.Cho
- J. Math. Anal. Appl. v.203 On vector quasivariational inequalities G.M.Lee;B.S.Lee;S.S.Chang https://doi.org/10.1006/jmaa.1996.0401
- J. Math. Anal. Appl. v.220 Existence of solutions for vector optimization problems G.M.Lee;D.S.Kim;H.Kuk https://doi.org/10.1006/jmaa.1997.5821
- Nonlinear Anal. TMA. v.34 Vector variational inequality as a tool for studying vector optimization problems G.M.Lee;D.S.Kim;B.S.Lee;N.D.Yen https://doi.org/10.1016/S0362-546X(97)00578-6
- Progress in Optimization On relations between vector variational inequality and vector optimization problem G.M.Lee;X.Q.Yang(ed.);A.I.Mees(ed.);M.E.Fisher(ed.);L.S.Jennings(ed.)
- J. Optim. Theory Appl. v.104 On implicit vector variational inequalities G.M.Lee;S.H.Kum https://doi.org/10.1023/A:1004617914993
- J. Optim. Theory Appl. v.109 A result on vector variational inequalities with poly-hedral constraint sets G.M.Lee;N.D.Yen https://doi.org/10.1023/A:1017522107088
- Nonlinear Anal. TMA. v.47 Remarks on relations between vector variational inequality and vector optimization problem G.M.Lee;M.H.Kim https://doi.org/10.1016/S0362-546X(01)00207-3
- J. Korean Math. Soc. v.40 On second order necessary optimality conditions for vector optimization problems G.M.Lee;M.H.Kim https://doi.org/10.4134/JKMS.2003.40.2.287
- Vector variational inequalities for nondifferentiable convex vector optimization problems G.M.Lee;K.B.Lee https://doi.org/10.1007/s10898-004-2696-5
- On optimality conditions for convex vector optimization without constraint qualifications G.M.Lee;K.B.Lee
- J. Optim. Theory Appl. v.113 On the stability of generalized vector quasi-variational inequality problems S.J.Li;G.Y.Chen;K.L.Teo https://doi.org/10.1023/A:1014830925232
- Lecture Notes in Economics and Mathematical Systems v.319 Theory of Vector Optimization D.T.Luc
- Convex Analysis R.T.Rockafellar
- Theory of Multiobjective Optimization Y.Sawaragi;H.Nakayama;T.Tanino
- J. Optim. Theory Appl. v.84 On vector variational inequality A.H.Siddiqi;Q.H.Aansari;R.Ahmad https://doi.org/10.1007/BF02191741
- Math. Oper. Res. v.8 Strong and weak convexity of sets and functions J.P.Vial https://doi.org/10.1287/moor.8.2.231
- J. Optim. Theory Appl. v.40 Quasiconcave vector maximization: Connectedness of the sets of Pareto-optimal and Weak Pareto-optimal Alternatives A.R.Warburton https://doi.org/10.1007/BF00933970
- J. Optim. Theory Appl. v.113 On relations between vector optimization problems and vector variational inequalities D.E.Ward;G.M.Lee https://doi.org/10.1023/A:1015364905959
- J. Optim. Theory Appl. v.79 Generalized convex functions and vector variational inequalities X.Q.Yang https://doi.org/10.1007/BF00940559
- Nonlinear Anal.TMA. v.21 Vector variational inequality and its duality X.Q.Yang https://doi.org/10.1016/0362-546X(93)90052-T
- J. Optim. Theory Appl. v.95 Vector variational inequality and vector pseudolinear programming X.Q.Yang https://doi.org/10.1023/A:1022694427027
- J. Optim. Theory Appl. v.95 On vector variational inequalities: application to vector equilibria X.Q.Yang;C.J.Goh https://doi.org/10.1023/A:1022647607947
- Vector Variational Inequalities and Vector Equilibria Vector variational inequalities, vector equilibrium flow and vector optimization X.Q.Yang;C.J.Goh;F.Giannessi(ed.)
- Vector Variational Inequalities and Vector Equilibria On monotone and strongly monotone vector variational inequalities N.D.Yen;G.M.Lee;F.Giannessi(ed.)
- J. Optim. Theory Appl. v.89 On vector variational inequalitis S.Y.Yu;J.C.Yao https://doi.org/10.1007/BF02275358