DOI QR코드

DOI QR Code

벡터 볼록 최적화 문제를 위한 벡터 변분부등식

  • 이규명 (부경대학교 자연과학대학 수리과학부)
  • 발행 : 2003.10.01

초록

본 논문에서는 벡터값을 가지는 함수로 이루어진 벡터 변분 부등식들의 해집합사이의 관계, 미분 불가능한 볼록함수로 이루어진 벡터 볼록 최적화 문제의 해집합들과 볼록함수의 아래미분으로 표현된 벡터 변분부등식의 해집합들과의 관계, 제약집합이 볼록 함수로 구체적으로 주어질 때의 벡터 변분부등식의 해가 될 필요 충분조건, 섭동된 강 단조 벡터 변분부등식의 안정성 결과와 섭동된 벡터 강 볼록 최적화문제에의 적용에 대한 최근 연구 결과를 정리한다.

키워드

참고문헌

  1. Lecture Notes in Economics and Mathematical Systems v.285 Vector variational inequality and vector optimization, Toward Interactive and Intelligent Decision Support Systems G.Y.Chen;G.M.Cheng;Y.Sawaragi(ed.);K.Inoue(ed.);H.Nakayama(ed.) https://doi.org/10.1007/978-3-642-46607-6_44
  2. Z. Oper. Res. v.34 A vector variational inequality and optimization over an efficient set G.Y.Chen;B.D.Craven
  3. J. Math. Anal. Appl. v.153 The vector complementary problem and its equivalences with the weak minimal element in ordered spaces G.Y.Chen;X.Q.Yang https://doi.org/10.1016/0022-247X(90)90270-P
  4. J. Optim. Theory Appl. v.74 Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem G.Y.Chen https://doi.org/10.1007/BF00940320
  5. J. Optim. Theory. Appl. v.81 Existence and continuity of solutions for vector optimization G.Y.Chen;B.D.Craven https://doi.org/10.1007/BF02193095
  6. Math. Methods Oper. Res. v.49 Network equilibrium with Vector costs and nonlinear scalarization methods G.Y.Chen;C.J.Goh;X.Q.Yang
  7. J. Optim. Theory Appl. v.116 Existence of solutions to implicit vector variational inequalities Y.Chiang;O.Chadli;J.C.Yao https://doi.org/10.1023/A:1022472103162
  8. Vector Variational Inequalities and Vector Equilibria Vector variational inequalities and modelling of a continuum traffic equilirium problem P.Daniele;A.Maugeri;F.Giannessi(ed.)
  9. Bull. Austral. Math. Soc. v.54 Existence theorems for vector variational inequalities A.Daniilidis;N.Hadjisavvas https://doi.org/10.1017/S0004972700021882
  10. J. Optim. Theory. Appl. v.93 Simultaneous vector variational inequalities and vector implicit complementarity problem J.Fu https://doi.org/10.1023/A:1022653918733
  11. J. Math. Anal. Appl. v.22 Proper efficiency and the theory of vector maximization A.M.Geoffrion https://doi.org/10.1016/0022-247X(68)90201-1
  12. Variational Inequality and Complementarity Problems Theorems of alternative, quadratic program and complementarity problems F.Giannessi;R.W.Cottle(ed.);F.Giannessi(ed.);J.L.Lions(ed.)
  13. New Trends in Mathematical Programming On Minty variational principle F.Giannessi;F.Giannessi(ed.);S.Komlosi(ed.);T.Rapcsak(ed.)
  14. Math. Programming v.84 Dual conditions characterizing optimality for convex multi-objective programs B.M.Glover;V.Jeyakumar;A.M.Rubinov https://doi.org/10.1007/s10107980013a
  15. Vector Variational Inequalities and Vector Equilibria Scalarization methods for vector variational inequality C.J.Goh;X.Q.Yang;F.Giannessi(ed.)
  16. J. Optim. Theory Appl. v.96 From scalar to vector equilibrium problems in the quasimonotone case N.Hadjisavvas;S.Schaible https://doi.org/10.1023/A:1022666014055
  17. Convex Analysis and Minimization Algorithms v.Ⅰ-Ⅱ J.B.Hiriart-Urruty;C.Lamarechal
  18. Mathematical Vector Optimization in Partially Ordered Linear Spaces J.Jahn
  19. SIAM J. Optim. New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs V.Jeyakumar;G.M.Lee;N.D.Dinh
  20. J. Global Optim. On the upper semicontinuity wit respect to parameters of solutions to vector quasi-variational inequalities and applications P.H.Khanh;L.M.Luu
  21. J. Optim. Theory Appl. v.114 Vector variational inequalities involving vector maximal points M.H.Kim;S.H.Kum;G.M.Lee https://doi.org/10.1023/A:1016075029509
  22. Optim. v.46 On generalized vector quasi-variational inequalities W.K.Kim;K.K.Tan https://doi.org/10.1080/02331939908844451
  23. J. Math. Anal. Appl. v.206 On the generalized vector variational inequality problem I.V.Konnov;J.C.Yao https://doi.org/10.1006/jmaa.1997.5192
  24. Appl. Math. Lett. v.16 An existence result for implicit vector variational inequality with multifunctions S.H.Kum;G.M.Lee;J.C.Yao https://doi.org/10.1016/S0893-9659(03)00019-3
  25. Taiwanese J. Math. v.6 Remarks on implicit vector variatinal inequalities S.H.Kum;G.M.Lee https://doi.org/10.11650/twjm/1500558302
  26. J. Korean Math. Soc. v.33 Generalized vector-valued variational inequalities and fuzzy extension B.S.Lee;G.M.Lee;D.S.Kim
  27. Appl. Math. Lett. v.12 A vector version of Minty's lemma and application B.S.Lee;G.M.Lee
  28. Appl. Math. Lett. v.6 Generalized vector variational inequality and fuzzy extension G.M.Lee;D.S.Kim;B.S.Lee;S.J.Cho
  29. J. Math. Anal. Appl. v.203 On vector quasivariational inequalities G.M.Lee;B.S.Lee;S.S.Chang https://doi.org/10.1006/jmaa.1996.0401
  30. J. Math. Anal. Appl. v.220 Existence of solutions for vector optimization problems G.M.Lee;D.S.Kim;H.Kuk https://doi.org/10.1006/jmaa.1997.5821
  31. Nonlinear Anal. TMA. v.34 Vector variational inequality as a tool for studying vector optimization problems G.M.Lee;D.S.Kim;B.S.Lee;N.D.Yen https://doi.org/10.1016/S0362-546X(97)00578-6
  32. Progress in Optimization On relations between vector variational inequality and vector optimization problem G.M.Lee;X.Q.Yang(ed.);A.I.Mees(ed.);M.E.Fisher(ed.);L.S.Jennings(ed.)
  33. J. Optim. Theory Appl. v.104 On implicit vector variational inequalities G.M.Lee;S.H.Kum https://doi.org/10.1023/A:1004617914993
  34. J. Optim. Theory Appl. v.109 A result on vector variational inequalities with poly-hedral constraint sets G.M.Lee;N.D.Yen https://doi.org/10.1023/A:1017522107088
  35. Nonlinear Anal. TMA. v.47 Remarks on relations between vector variational inequality and vector optimization problem G.M.Lee;M.H.Kim https://doi.org/10.1016/S0362-546X(01)00207-3
  36. J. Korean Math. Soc. v.40 On second order necessary optimality conditions for vector optimization problems G.M.Lee;M.H.Kim https://doi.org/10.4134/JKMS.2003.40.2.287
  37. Vector variational inequalities for nondifferentiable convex vector optimization problems G.M.Lee;K.B.Lee https://doi.org/10.1007/s10898-004-2696-5
  38. On optimality conditions for convex vector optimization without constraint qualifications G.M.Lee;K.B.Lee
  39. J. Optim. Theory Appl. v.113 On the stability of generalized vector quasi-variational inequality problems S.J.Li;G.Y.Chen;K.L.Teo https://doi.org/10.1023/A:1014830925232
  40. Lecture Notes in Economics and Mathematical Systems v.319 Theory of Vector Optimization D.T.Luc
  41. Convex Analysis R.T.Rockafellar
  42. Theory of Multiobjective Optimization Y.Sawaragi;H.Nakayama;T.Tanino
  43. J. Optim. Theory Appl. v.84 On vector variational inequality A.H.Siddiqi;Q.H.Aansari;R.Ahmad https://doi.org/10.1007/BF02191741
  44. Math. Oper. Res. v.8 Strong and weak convexity of sets and functions J.P.Vial https://doi.org/10.1287/moor.8.2.231
  45. J. Optim. Theory Appl. v.40 Quasiconcave vector maximization: Connectedness of the sets of Pareto-optimal and Weak Pareto-optimal Alternatives A.R.Warburton https://doi.org/10.1007/BF00933970
  46. J. Optim. Theory Appl. v.113 On relations between vector optimization problems and vector variational inequalities D.E.Ward;G.M.Lee https://doi.org/10.1023/A:1015364905959
  47. J. Optim. Theory Appl. v.79 Generalized convex functions and vector variational inequalities X.Q.Yang https://doi.org/10.1007/BF00940559
  48. Nonlinear Anal.TMA. v.21 Vector variational inequality and its duality X.Q.Yang https://doi.org/10.1016/0362-546X(93)90052-T
  49. J. Optim. Theory Appl. v.95 Vector variational inequality and vector pseudolinear programming X.Q.Yang https://doi.org/10.1023/A:1022694427027
  50. J. Optim. Theory Appl. v.95 On vector variational inequalities: application to vector equilibria X.Q.Yang;C.J.Goh https://doi.org/10.1023/A:1022647607947
  51. Vector Variational Inequalities and Vector Equilibria Vector variational inequalities, vector equilibrium flow and vector optimization X.Q.Yang;C.J.Goh;F.Giannessi(ed.)
  52. Vector Variational Inequalities and Vector Equilibria On monotone and strongly monotone vector variational inequalities N.D.Yen;G.M.Lee;F.Giannessi(ed.)
  53. J. Optim. Theory Appl. v.89 On vector variational inequalitis S.Y.Yu;J.C.Yao https://doi.org/10.1007/BF02275358