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SYMMETRIC SURFACE WAVES OVER A BUMP

J. W. CHo1, DANIEL AN, CHAEHO LIM, AND SANGRO PARK

ABSTRACT. We study the surface waves of an incompressible fluid
passing over a small bump. A forced KdV equation for surface wave
is derived without assuming that flow is uniform at far upstream.
New types of steady solutions are discovered numerically. Two new
cut off values of Froude number are found, above the larger of which
two symmetric solutions exist and under the smaller of which two
different symmetric solutions exist.

1. Introduction

In this paper, we consider two-dimensional steady flow of inviscid and
incompressible fluids of constant density with free surface and bounded
below by a rigid boundary with a small bump.

Numerical studies of steady flows past a semi-circular obstruction
were carried out by Forbes and Schwartz (7], Vanden-Broeck [10], and
Forbes [4]. They discovered two critical values F_, Fy of Froude number
F = c¢/+/gh, where g is the constant gravitational acceleration, h is the
constant depth of the fluid far upstream, F. < 1 and Fy > 1. For
I < F_, there exists only one branch of solutions of the free surface
elevation 7(x), which is almost zero behind, but periodic ahead, of the
obstruction. In F. < F < Fy, there exists no steady flow. For F >
F,, there exist two symmetric solutions of solitary-wave type. One
approaches the uniform flow far upstream and the other approaches the
solitary wave solution for a fluid with constant depth, as the obstruction
size tends to zero. An asymptotic theory for small amplitude steady one
or two-layer flow past an obstruction has been developed by Shen, Shen
and Sun [9] and Shen [8], Choi, Sun and Shen [4], Choi and Shen [3], and
Choi [2]. There, by assuming that the fluid is uniform at far upstream,
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they derived the Forced Korteweg-de Vries equation (FKdV) as a model
equation governing the flow as follows:

m6n$ + mll'n'r]w + m/277:m:z = bz(x>>

where z is the horizontal distance, my,, m}, m}, are constants and z = b(x)
is the equation of obstruction.

In the problem considered here, we derive a FKdV equation, as a
model equation of surface wave, by assuming that the fluid is periodic
at far upstream instead of assuming that the fluid is uniform at far
upstream. New types of steady symmetric solutions are discovered nu-
merically. Two new cut off values of Froude number are found, above
the larger of which two symmetric solutions exist and under the smaller
of which two different symmetric solutions exist.

2. Derivation of the FKdV equation

The problem considered here concerns steady two-dimensional inter-
facial waves of an inviscid fluid with constant density passing over a
small bump with compact support. (Figure 1)

The governing equations and boundary conditions are given as fol-
lows: in —oo < z* < 0o, —H + b*(2*) < y* < 7%,

(1) ¢;*Z‘* + ¢,:;*y* = 0,

at y* =n",

(2) ¢:;*77;* - QS;;* = 0)

(3) (¢33 +0}2)/2+ gn* = B*/2,
-
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Figure 1. Fluid Domain
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at y* = —H + b*(z*) ,
(4) Pys — Pprbp= (") =0
where (z*,y*) are horizontal and vertical variables, respectively, ¢* is
a flow potential, n* is a function of free boundary elevation, g is the
gravitational acceleration constant, y* = —H + b*(z*) is the equation
of obstruction, where b*(z*) has a compact support, B* is a Bernoulli
constant, and H is the equilibrium mean depth of the fluid.

We introduce the following dimensionless variables: = z*/L, y =
y*/H, e= (H/L? < 1, n = n*/eH, ¢ = ¢*/e/?H(gH)}/?, B =
B*/(gH)1/2, b(x) = ¢ 2b*(2*)/H.

In terms of the above dimensionless quantities, (1) to (4) become as
follows: In —1 + €2b(z) < y < €7 ,

(5) €Pzz + dyy =0,

at y = en,

(6) €pune — € 1y =0,

(7) €(®% + dy/€)/2+n=B*/2,
at y = —1 + €?b(z) ,

(8) ¢y — Epsbs(z) = 0.

We seek solutions for periodic water waves of wavelength p*, and intro-
duce the dimensionless wavelength

(9) p=p'/L.

The Froude number F' is defined as
€ Trt+p

(10) F=—/ bt |
wJz

f
where z; < 0 since we assume that the fluid is periodic with mean depth
H at far upstream. We note that, by taking p — oo, (10) becomes the
same as the Froude number ¢//gH in (7], [9] and [10] if we assume the
fluid is uniform at far upstream where ¢ is the uniform speed.

We assume that B, ¢, F and 7 possess an asymptotic expansion of
the form:

B =By+¢eBi+€eBy +eBy+---

(11) ¢ =Bz/e+ o+ ep1+Eha+ 3+
F =Fy+ef +EFR+e&F3+---

n =notem+enten -+,
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By substituting (11) into (5) to (8) and rearranging equations accord-
ing to the order of €, we obtain the relations of variables by the order of
€.

O(e71): at y =0,

(12) $oy(z,0) = 0.

O(e%): in -1 <y <0,

(13) Poyy(z,y) =0,

at y =0,

(14) Bomoz — nodoyy — ¢14(2,0) =0,
(15) $%y/2 + Bogos(2,0) + 10 = 0,
at y = —1,

(16) doy(x,—1) = 0.

O(e): in -1 <y <0,

(17) bosz(Z,Y) + 1yy(z,y) = 0,
at y =0,

(18) Bomiz + B1moz + PozMoe — P2y — M0P1yy — M doyy = 0,

(19) $62/2 + B10z + Bomodosy + Bogiz +m =0,
at y = —1,

’ (20) ¢1y(.’12, -1)=0.

O(e?):in -1<y <0,

(21) P122(%, y) + dayy(z,y) = 0,

at y = -1,

(22) P2y (2, —1) = Bgbg ().

Next, we solve (12) to (22) in terms of no(z). (12), (13) and (16)
imply ¢o(z,y) = ¢o(x) and we obtain

(23) $14(2,y) = —Pozz(z)(y + 1)
from (17) and (20). From (14), (15) and (23), we have
(24) Bonoz — ¢1y = 0, Bogor +m0 =0,

(25) $1(2,Y) = ~doaa(¥?/2 + Y) — bozz/2 + ¢1(z, ~1).
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(23) and (24) imply

(26) Bo =1, ¢os(z) = —0().
Let
(27) Ri(z) = —Pozz/2 + ¢1(z, —1),
then from (19), (25), (26) and (27) it follows that
(28) $12(2,y) = —Pozzz(y°/2 + ) + Raz(2),
(29) $102(,0) = Rige = —M1z + Binoe — 1070c-

From (21), (25), (27) and (29)
2

¢2yy(ma y) = ¢Ozzxx(% + y) + Nz — Banz + No7N0z -

Integrating above equation with respect to y from —1 to y yields

¥ A1
¢2y(x:y) - ¢2y(my _1) = ¢0zzzz(’€ + ?) - §¢wamz
(30) +(n1z — B1mow + nomoz) (y + 1)-

We also obtain from (22), (26) and (30)

1
(31) ¢2y(xa 0) = §770:1:zz + Nz — Bl'r]Oz‘ + nonoz + bz .
From (18), (26), (28), (29) and (31), we finally derive

(32) 2B1m0z — 3nomoz — %nmmw = by.
Using (10) and (11),
F =Fg+ €F1 + O(e?)
€ /“+”f(Bo + €B1 + O(€?)
z

1 €

+ ¢oz + O(€))dz

f
p+zs

1
= Bo+e(B1+ / b0adz) + O(e?).
s

By (26) and by the fact that mean value of periodic solution 7g(z) over
a period is zero for x < 0, we find that

1 Tyt 1 Tftu
(33) —/ Pozdx = *—/ nodz =0 ,

and hence, we have
Bo=Fyp=1, By =F;.
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Then (32) becomes

e

3 1
(34) _57707701 + /\7702 - gnOxzm = bz (:L‘),

where b/me/) = bx(z)/2, F1 = A. We note that, in above derivation of the
forced KdV equation(FKdV), 7o and 7;, need not be 0 at = —o0, which
have been used to derive the FKdV in other researches ([3], (8], [9])-

3. Forced KdV equation

Since b(z) is has a compact support, we assume b(z) = 0.for z < z_
and z > z; and shall construct the solutions of the equation (34) in the
following way. We first find homogeneous solutions of (34) for z < z_
and z > z, on which b(z) = 0 and then find the global solution of (34)
by using the matching process at £ = z_ and z = x4 as was in [7]-[10].

—

First we find periodic solution of mean value zero of (34) when b;(z)
= 0. The periodic solution is required to be of mean value zero to avoid
the infinite mass dilemma.

(35) 0= gUOHOm — Aoz + énOzxz-

Equation (35) has periodic solutions ([1], [8]). Since we look for
solutions of mean value zero, let us assume that 7y has a negative local
minimum a < 0 at z = zg. 19 and let 772)/ (zo) = B > 0. Integrating (35)
from zo to x reduces (35) to a second order equation. By multiplying
Noz to the second order equation and integrating the resulting equation
from zp to x > o, we obtain

(noz)? = —3n0® + 6 02 + Pno + N = f(no),

where P = 9a? — 12Xa + 28, N = 302 — 6\a® — Pa.
Define

A=+/(3a —2))2 +83/3, B=a — 2\

Then the three roots of f(np) =0 are —B + A/2, a and —B — A/2 with
—B+ A/2 > a > —B — A/2 and, when these three roots are distinct,
the periodic solutions of (35) is given as follows:

V3A A—-B
(36) no(x) = —Ak'2Sn2(T(x —xz0) + K, K') + —5
where k2 = 1/2 — (3a — 2))/24, no(zo) = o < 0, my(z0) = 0, 7y (z0) =
B >0, K' = K(k'?) and K is the Complete Elliptic Integral of the First
Kind. Sn is the Jacobian Elliptic function [5]. As a 1 (=B + A/2),



Symmetric surface waves over a bump 1057

A e e i 2‘

8 6 -4 2 0 2 4 6
Figure 2. The relation between A and « when 3=4

(36) tends to a constant solution and as (—B — A/2) T o (36) tends
to a solitary wave solution. The period of 7p(z) in (36) is 4K'/V3A
and [2 dn~2(u,k)du = 2E(k?)/k?, where k% = 1 — k2 and E is the
Complete Elliptic Integral of the Second Kind. Since we seek the solution
no{x) with zero mean value, 7o{x) must satisfy the following:

/4Kf/m +x0 (2)d 4AE(k12) A+ B 4K(k’2) 0
7T o= ~— == .
2o " V34 2 /B3A

and hence the following condition must be satisfied:

(37) z\ﬂ&y —20)2 4 «gﬁE(k’Q) = <.\/ (3 — 2)0)2 + §ﬁ+a~2,\)f{(k'2).

For given 3, pairs of @ and ) satisfying (37) can be found numerically.
Figure 2 is the relation of o and A satisfying (37) when 8 =4.. .
Next, we try to find symmetric global solutions of (34) numerically.

For numerical computation it is assumed that b(z) = v1 —z? for —1 <
z <1and b(z) =0for z ¢ [-1,1]. We also assume that some mollifiers
are multiplied to b(z) on each of very small intervals containing 1 and
—1 so that b(z) is differentiable everywhere. For z < —1, Let

v A-B

) mle) = AR ) 4 K ) + S

where A = \/(3a — 2X)2 +83/3, B=a~2) k" = 1/2—(3a~2))/24,
mo(we) = @ < 0, ny(zo) = 0, mo (o) = 8 > 0, K’ = K(K'*) and K is the
Complete Elliptic Integral of the First Kind. Here, «, 3, and y satisfy the
relation (37) and no has its negative minimum at xp. Since we concerns
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Figure 3. The relation between 70(0) and A when =4

symmetric solutions, to find a solution in |z| < 1 we need only consider
(34) in —1 < z < 0 subject to (mog)? = —3me® + 6Ane% + Png + N
at = —1 and ny(z) = 0 at z = 0, where P = 9a? — 12)a + 24,
N = 303 — 6\a? — Pa. This problem can be solved numerically by a
shooting method and the location of zg is then determined by (38) for
z = —1. The numerical results are presented in Figures 3-7. In Figure
3, we show the relationship between 7(0) and XA when § = 4. This
numerical results illustrates that two critical values A\; and Ay of ) exist.
Two types of symmetric solutions exist for A > Ag and another two
types of symmetric solutions exist for A < A1. No symmetric solution
exists for )\ in between A; and A;. We note that only one critical value
of A is found if we consider solitary wave solution for z < —~1 [4]. Four

21 — 2
1.5?’ 1.5
1 1
0.5 1 0.5 1
-0 5} -05 ]
-1‘ -1
-1.5 -1.5
T a2 0 2 4 6 T 4 2 0 2 4 6
Figure 4. Symmetric solution at  Figure 5. Symmetric solution at
p1 in Figure 3 (a = —0.22863, p2 in Figure 3 (a = —0.22863,

A = —3.00, phase shift= 1.4089) A = —3.00, phase shift= 0.6594)



Symmetric surface waves over a bump 1059

20 . : . 2 R N

15 s

10 [\ ' ) 101/\

UV UL
P

0 ] of

5 5

10 -1

B 2 ST WL 0 2 4 6

Figure 6. Symmetric solution at  Figure 7. Symmetric solution at
ps in Figure 3 (a = -3.81137, p4 in Figure 3 (o = -3.81137,
A = 1.00, phase shift= 1.0434) A = 1.00, phase shift= 1.2451)

typical symmetric solutions are given in Figures 4 to 7. Figure 4 and 5
shows two different types of symmetric solutions at p; and ps in Figure
3 respectively when 8 =4 and A = —3. Another two different shape of
symmetric solutions are given in Figures 6 and 7 at p3 and p4 in Figure
3 respectively when 8 =4 and A = 1.

4. Concluding remark

In this paper we consider the physical problem of steady state flow
past a positive symmetric body at the horizontal bottom. Two new
results have been found. First, a forced KdV equation for surface wave is
derived without assuming that fluid being considered is of constant depth
at far upstream, which allows to consider periodic waves ahead of the
symmetric body at the horizontal bottom. Secondly, two cut off points
of Froude number F; = 1+ €\ and Fy = 1 + €)\s for symmetric wave
solutions have been found numerically by considering periodic solutions
in the set on which the forcing term of the Forced KdV equation is zero.
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