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NOTES ON KAHLER SURFACES WITH
DISTINCT CONSTANT RICCI EIGENVALUES

TERUMASA NIHONYANAGI, TAKASHI OGURO AND KOUEI SEKIGAWA

ABSTRACT. In this paper, we study a connected, simply connected
homogeneous Kéhler surface with distinct constant Ricci eigenval-
ues, and specify the local structure of them.

1. Introduction

Recently, V. Apostolov, T. Draghici and A. Moroianu studied com-
pact Kéhler manifolds whose Ricci tensor Ric (or rather the symmetric
endomorphism of the tangent bundle corresponding to Ric via the met-
ric) has two distinct constant eigenvalues and proved the followings.

THEOREM A ([1]). Let M = (M, J, g) be a compact Kahler manifold
whose Ricci tensor has two distinct non-negative eigenvalues A and p.
Then, the universal covering of M is the product of two simply connected
Kahler-Einstein manifolds of Ricci eigenvalues A and i respectively.

THEOREM B ([1]). Let M = (M, J,g) be a compact Kahler surface
whose Ricci tensor has two distinct constant eigenvalues. Then, one of
the following alternatives holds:

(i) M is locally symmetric, i.e. M is locally the product of Riemannian
surfaces of distinct constant Gaussian curvature;

(ii) if M is not as described in (i), then the eigenvalues of the Ricci
tensor are both negative and (M, J) must be a minimal surface of general
type with ample canonical bundle and with even and positive signature.
Moreover, in this case, reversing the orientations, the manifold would
admit an Einstein, strictly almost Kéahler structure.
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On one hand, H. Shima studied 2n-dimensional homogeneous Kéhler
manifolds with non-degenerate Ricei form of signature (2,2(n — 1)) and
obtained the following classification in dimension 4.

THEOREM C ([8]). Let M = (M, J,g) be a connected, simply con-
nected homogeneous Kéhler surface with non-degenerate Ricci form p.
Then, the signature of p is (4,0) or (2,2) or (0,4). Moreover,

(i) if the signature is (4,0), M is either P1(C) x P;(C) or P,(C), where
P,(C) is a complex projective space;

(ii) if the signature is (0,4), M is either H1(C) x H1(C) or Hy(C), where
H,(C) is a complex hyperbolic space;

(ii1) if the signature is (2, 2), M is a holomorphic fiber bundle over H,(C)
with fiber P,(C).

In this paper, we specify the local structure of a connected, simply
connected homogeneous Kéhler surface M = (M, J, g) with distinct con-
stant Ricci eigenvalues (§ 3). From the argument of § 3, we will also find
that if the signature of Ricci form of M is (2,2), then M is locally the
product of Riemannian surfaces of constant Gaussian curvature.

We remark that the problem of existence of Kéhler metrics whose
Ricci tensor has two distinct constant eigenvalues is related to the Gold-
berg conjecture (in the open case, i.e. the negative scalar curvature).
In fact, in [1], it was showed that the irreducible homogeneous Kahler
manifolds whose Ricci tensor has two distinct constant negative eigenval-
ues give rise to complete (non-compact) Einstein strictly almost Kéhler
manifolds of any even dimension grater than 4. For example, M?" =
S50(2,n)/(SO(2) x SO(n)), n > 3.

2. Local structures

Let (M, J,g) be a Kéhler surface of the constant Ricci eigenvalues
A, o (A < w), and E», E, the corresponding J-invariant eigenspaces
at peach point of M. Ej and E, give rise to two smooth distributions
on M. We denote by 2 the Kéahler form of (J,g), which is given by

Q(., ) = g(].’ )
Now, we consider the 2-forms «, 3 defined respectively by

(2.1) a(X,Y) = QP (X),Pr(Y)),
for vector fields X,Y € TM, and
B=Q—«
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where Pr* (resp. Pr#) denotes the orthogonal projection Pr* : TM — E\
(resp. Pr* : TM — E,,). The Ricci form p(-,-) = Ric(J", ) is given by
(2.2) p = da+ ub.

Thus, we have

@3 a=y(-u), A= 00-p).

Since p and ) are both closed, so are « and 3.

ProprosITION 1. The distributions E) and E, are both involutive.

Proof. Let {e1,e2 = Jei1} and {e3,e4 = Jes} be any local unitary
frame fields for £\ and E, respectively. We set

4
Veiej = Z Fijkek:-
k=1

Then, we have

(2.4) Lije = —Tikjy  Tip =Tk,

where we adopt the notational convention e; = Je; (i = 1,...,4). From
the definition of & and 3, we see that

(2.5)  aler,e2) = —afez,e1) =1,  Bles,es) = —Ples, €3) = 1,
and the others are zero. We denote by A and B the linear endomor-

phisms of T M corresponding to the 2-forms « and 3 respectively. Since
« and B are closed, we have

6 g((VxA)Y,Z)=0, S 9((VxB)Y,Z) =0,
XY,z X.Y,2

where G x v,z denotes the cyclic sum with respect to X, Y, Z. In par-
ticular, from (2.4) and (2.5), we get

0= & g((th)eZv 83) = 6 g(v31 (Ae2) - A(v€1e2)ﬂ 63)

€1,62,€3 €1,62,€3
= —T'11g + I'2z2 =gz — oay,

and hence

(2.6) Ti40 —T9q1 = 0.

Similarly, from Ge, e,,eq 9((Ve, A)ea, e4) = 0, we get

(2.7) I'i3p —Tg31 = 0.

Thus, E) is involutive. By the similar way, we obtain
(2.8) 314 —T'413 = T's24 — T423 = 0.
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Thus, we see also that E,, is involutive. [l

From Proposition 1, we may choose a local coordinate system (z1,y1,
T2,%2) such that {8/0z1,0/0y:1} spans Ey and {0/0z2,0/0y2} spans
E,. Since E) and E, are J-invariant, we may set

Ja?cl 116(3;1 +Jla§1> % = J}a‘zl Tlaiyl’
Then, J?> = —1 implies
(P + R =1, (JH2+ JAJL = 1,
(2.9) R +) =0, R+ =0,
(J3)% + J§2J22 = -1, (J2)2 + J2J2 = 1,
T+ J3) =0, B3+ JB) =

Thus, we have Jli # 0, Jil # 0 and
(2.10) g =g
Since g(J(8/dx1),0/dx1) = 0, we have
Jigu + Jioi1 = 0.
Thus, we may put
(2.11) Jl=—Fgi, Ji=Fgu.
From ¢(J(8/0z1),0/8y1) + g(8/dz1,J(8/dy1)) = 0 and (2.10), we have
Jigr + Jigu =0,
and hence,
(2.12) Jt = —Fgr.
Taking account of (2.9)~(2.12), we have
911 Gii 1
det = —.
(911 gii) F?
We put €2?* = 1/F?%. Summing up the above arguments, we obtain

911 911 —-o ‘]1i _J11>
2.13 = 1 .
( ) (gli gﬁ) < J11 Jil
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Similarly, we get
(2.14)

(922 gﬂ) =e 72 < J222 _J%) , where €% = det (922 922) .
923 922 —Jy —J; 923 953
From (2.13) and (2.14), we have

Q=e %%z ANdyy + €7 72dzy A dys.

Since Q is closed, it must follow that o; = oy(%i,¥;), (¢ = 1, 2). Thus,
we conclude the following.

PROPOSITION 2. There exists a local Darboux coordinate system
(z1,y1,22,Y2) such that {8/0z1,0/0y1} and {0/0x2,0/0y2} are local
frame fields for E) and E, respectively.

We remark that Propositions 1 and 2 do not necessarily guarantee
the existence of local complex coordinate system (21 = z1++v—1y1, 22 =
x9++/—112) which is compatible with the complex structure J such that
{0/0x1,0/0y1} and {8/0x2,0/0ya} are local bases for the distributions
Ey and E, respectively. In fact, we may easily show that, for a Kéhler
surface M = (M, J, g) of constant distinct Ricci eigenvalues A and p, if
there exists a complex coordinate system (21 = =1 + vV—1y1,22 = 22 +
v/—1%2) around any point of M which is compatible with the complex
structure J, then M is locally the product of two Riemann surfaces with
Gaussian curvature A and g (compare with the Example in § 4).

3. Homogeneous Kihler surface with distinct constant Ricci
eigenvalues

An almost Hermitian manifold M = (M, J, g) is homogeneous if there
exists a Lie subgroup G of the automorphism group Aut(M, J, g) which
acts transitively on M. The following result is known.

THEOREM D ([5]). Let M = (M, J,g) be a homogeneous almost
Hermitian manifold. Then, there exists a skew-symmetric tensor field T
of type (1,2) satisfying the following conditions for any X € TM:

(1) VxJ=T(X)-J, (2)VxR=T(X)-R, (3)VxT=T(X)T,

where T(X)Y = T(X,Y) and the symbol “T(X)-” means that T(X)
acts as a derivation of the tensor algebra. The tensor field T is called a
homogeneous structure of M.
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Now, let U(M) be the unitary frame bundle over a connected, simply
connected, complete almost Hermitian manifold M = (M, J,g) and T
a skew-symmetric tensor field of type (1,2) satisfying the conditions
(1), (2) and (3) in Theorem D. Let uy be an arbitrary fixed point of
U(M) and V* be the linear connection defined by V% = Vx — T(X)
for X € TM. Then, we may easily check that g and J are parallel with
respect to V*, i.e. V*¢ = 0 and V*J = 0. The holonomy bundle G
of V* through u has a Lie group structure with identity ug and acts
transitively on M as a group of automorphisms. This is the converse of
Theorem D.

A homogeneous almost Hermitian manifold M = (M, J, g) satisfies
the following condition H(m) for all non-negative integers m.

H(m): for any z, y € M, there exists a linear isometry ® : (T, M, g;) —
(T,M, g,) such that

$o0J,=J,0® and ®(VFR),=(VFR), fork=0,1,..., m.

In fact, ® is given by putting ® = dy,, the differential mapping of
a holomorphic isometry ¢ of M with ¢(z) = y. For a Riemannian
manifold M = (M, g), we denote by P(m) the following condition:

P(m) : for z, y € M, there exists a linear isometry ® : (T, M, g,) —
(TyM, g,) such that

®(VFR), = (V*R), fork=0,1,..., m.

A Riemannian manifold M satisfying the condition P(0) is called cur-
vature homogeneous. In general, a curvature homogeneous Riemannian
manifold is not homogeneous even if it is connected and simply con-
nected ([4]), and the following result is known.

THEOREM E ([7]). Let M = (M,g) be a 4-dimensional connected,
simply connected, complete Riemannian manifold satisfying the condi-
tion P(1). Then, M is homogeneous, i.e. M is a locally symmetric space
or a group space.

Now, let M = (M, J,g) be a 2n-dimensional homogeneous almost
Hermitian manifold with the automorphisms group G = Aut(M, J, g)
which acts transitively on M. For a point ug = (z;e1, Jei,...,en, Je,) €
U(M), we set G = {4(uo) | % € G }. Then, G is a principal subbundle
of U(M) and has a Lie group structure with the identity e = ug which
is isomorphic to G by the canonical correspondence 4 — v = 4(e).
Moreover, G acts transitively on M as a group of automorphism by
y(z) = 7(vy), v € G, x € M, where 7 : U(M) — M is the bundle
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projection and m(y') = x. Then, relating to G (or G), we have a skew-
symmetric tensor field T of type (1,2) on M satisfying the conditions
(1), (2) and (3) in Theorem D. We define functions fy...p, ;5% and Tk
on U(M) respectively by

Tnomsight(w) = 9((VE, e, R)(es,¢5)en, e1), Tiju(u) = g(T(ei, €5), ex),

for u = (z;e1, Jey, ... en, Jey) € UM, J, g). Then, we have the follow-
ing.

ProOPOSITION 3. On G, the functions fp,...n; ;50 and Ty are con-
stant.

For each point z € M, we define a Lie group G? by
G: = {aé U(T:M, Jz, g2) |tioa=ti for:=0, ..., s},
where t; and ¢; o a are defined respectively by

tl(XZa v aX].?Y’ Z) = ( Z){z)(l‘R)(}/; Z)7
(tioa)(Xi, .., X1,Y,Z) = a Vi, ox,R)(aY,aZ)a,

for X;, ..., X1,Y, Z € T, M. We denote by g7 the Lie algebra of G¥ and
put € = g¥. We note that g} and g} are isomorphic for any =, y € M.

In the sequel, we assume that (M, J, g) is a connected, simply con-
nected homogeneous Kéhler surface with distinct constant Ricci eigen-
values A, pt (A < p). Then, the following cases are possible.

Case I £ = {0},
Case IL: ¢ =u(1) ® {0} or CaselIl': t= {0} ®u(l),
Case III: € = u(1) ® u(1).

Case 1

In this case, the corresponding Lie group G of automorphisms acts
simply transitively on M. We denote by V* the linear connection on
the principal subbundle G of U(M, J, g) through uy € U(M, J,g). The
tensor field T of type (1,2) defined by T' = V* — V satisfies the condition
(1), (2) and (3) in Theorem D. If vy = (z;e1,e2 = Jey,e3,e4 = Jes) € G,
then we see that V7 e; = 0 and hence Tijx = I'j, are regarded as
constant-valued functions on M. Then, taking account of (2.4) and
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(2.6)~(2.8), we have

Riz13 = I'341(2l134 — T'112) — T'132(20312 — T'334)
+ T35 + TTap + i + T2

Ri414 = —T'341(2T134 — T112) — T'142(2T 412 — Ty34)
+ Ty + Tlgp + Tia1 + Thes,

Raagq = T'142(2T 412 — T'y34) — T'342(2T234 — T'212)
+ 50 + Thap + T3a1 + Thass

Ra3a3 = I'132(2T 312 — T'334) + '342(20234 — Ta12)
+Thse + Ta2 + T340 + Togo.

(3.1)

Since Ri313 = Ro404 and Ry414 = Ra323, we have
[341(2T134 — T'112) — T132(20312 — T'334)
= I'142(2T 012 ~ T'434) — T'342(2T234 — Ta12),
— I'341(2T134 — T112) — T'142(2T 012 — Taz4)
= I'132(2T312 — T'334) + ['342(2T234 — Ta12),
and hence,
T'132(20312 — T'334) + T142(2T412 — T'a34) = 0,
I'341(2T"134 — T'112) + T'342(2T 234 — Ta12) = 0.

On one hand, we have

Ri314 = —T'142(20'312 — T'334) —
Rig13 = —T'132(2T 412 — Ty34) —

Since R1314 = R1413, we have

(3.2)

42(2T'134 — T'112),

I's
I'342(2T'134 — T'112).

(3.3) [132(2T 412 — T'434) — T'142(20312 — T'zq) = 0.
Similarly, from Ri393 = Ra313, we obtain
(3.4) [341(2T234 — T'212) — I'342(2T134 — T'112) = 0.

From the equalities (3.2), (3.3) and (3.4), we see that the following cases
are possible.

Case(I-1): (T'132,142) # (0,0) and (341, s42) # (0,0),
Case(I-2): (I'i32,'142) = (0,0) and (I'341, T'342) # (0,0),
Case(I—3): (F132,F142) 7'5 (0,0) and (P341,F342) (0 0),
Case(I—4): (F132,F142) = (0, O) and (F341,F342) (O 0).
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Case (I-1). In this case, (3.2), (3.3) and (3.4) are reduced to
(3.5)
234 —T'112 =0, 2934 — 212 = 0, 2’312 — 334 = 0, 2T'q12 — T34 = 0.

Taking account of (3.5), we have
Rig13 = —T132(2T212 — I'ags) — T142(2T 112 — Ti34)
= —3(T'132T'234 + '142T"134),
R3413 = —T'341(2T434 — Ta12) — I'342(2T'334 — I'312)
= —3(Tsa1T412 + '342T'312).

Since Rj213 + R3413 = 0, we have

(3.6) I'132934 + 1421134 + 3417412 + 340312 = 0.
Similarly, from Ri214 + R3414 = 0, we obtain
(3.7) I'y30T134 — 142234 + T'349T 412 — T'3417312 = 0.

On one hand, we get
Riyg412 = 20341132 + 23491142 + T'1320112 — T'142l212
+ [i34l'312 + Da12T212 — F3410312 + 342l 412,
Ri434 = 2T3411"132 — 2340 142 + T132T134 — 1420234
+ 134334 + Ta128234 — I'3410334 + T'342434.
Since Ri412 + Ri434 = 0, we have
(3.8) T'132T134 — '142l'234 + T'312(T'134 — T341) + Tg12(T234 + T'342) = 0.
Similarly, from Rj312 + Ri334 = 0, we obtain
(3.9) T132T'234 + 1420134 — I'312(T'234 — T'342) + Tg12(T'134 + T'341) = 0.
Thus, from (3.6)~(3.9), we have
(3.10) I'312T134 + Fg120234 = 0, Pa12T134 — 3120234 = 0.
By direct calculation, we get
Riziz = T}y 4 T35 — 2(T3sp + Tlag) = 4(TT3q + T34) — 2(Ts + T1a),
Rizza = 2(T55 + T1yp + T34 + T'334).
Thus, we have
(3.11) — = Ria12 + Rigza = 6(T}34 + T3a4)-
Similarly, we have

(3.12) —p = Ragz + Raazs = 6(T3, +T%315)(> 0).
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Since A # 0, we see that (I'134,'234) # (0,0) by virtue of (3.11). Thus,
(3.10) implies (I'312, T'412) = (0,0). Then, (3.8) and (3.9) are reduced to

I'42T'134 + T'132T7234 = 0, I'132M134 — I'142l234 = 0.

Since (134, 'a34) # (0,0), it must follow that (I'132, T'142) = (0,0). But,
this contradicts to the assumption of case (I-1). Thus, case (I-1) cannot
occur.

Case (1-2). In this case, from (3.2) and (3.4), we have

(313) 2F134 - F112 = O, 2F234 - P212 - O

Further, we get

(3.14)

Rioip =T2%, + T2 Riziz =T%,, + 1% Rig1qa = T2, + T2
1212 112 2123 1313 341 342> 1414 341 342-

Thus, we have
(3.15) =X = Rioiz + Riz13 + Risna = T35 4+ T35 + 2(T%,; + T2y),
and hence, A < 0. By direct calculation, we get also
Ri213 =0, R3s13 = —I'341(2434 — T'412) — ['342(20'334 — ['312),
Ri214 =0, Rasa = D342(2T434 — Ta12) — ['341(2334 — T'z12).
Thus, form Rj213 + R3413 = 0 and Ry214 + Rag14 = 0, we have
—I'341(2434 — Ta12) — I'342(2C334 — T'312) = 0,
I'342(2T434 — T'412) — 341(2T334 — I'312) = 0.
Since (I's41,'342) # (0,0), we get
(3.16) 2T'334 — I'312 = 0, 2434 — L4122 = 0.
Thus, we have also
R3413 = R3414 = 0.
Further, we have
(3.17) Rizsa = 2(T%54+1%s,),  Rassa = —2(T34+T542) + 1524+ T34,
and hence,
(3.18) —p = 2(T%34 + T334) — 2(T341 + T342) + T334 + Tisa-
On one hand, we have
Risia=0,  Rago =2(T3y + T3, + T35 + Iiza).
Since Ri934 = R3412, we have
(3.19) %34 + T334 = T341 + Thap + T334 + Tisa-
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Substituting this equality into (3.18), we get
(3.20) —p = 3(T334 + T334),
and hence, p < 0. Further, we have
Ryzz =Ty + T35 = 4(TF34 + Ts4) = 2R12a4,
and hence,
—A = Ri212 + Ri234 = 3R1234.
Therefore, we obtain

2 A A
(3.21) Rz = —3N Buou=-3, Risis = Bians = —¢

Since R1412 = R1214 =0 and R1312 = R1213 = 0, we have
I312(I'134 — T'341) + Ta12(T212 + T342) = 0,
['312(T'212 — 342) — T412(T'134 +T301) = 0.
Thus, we see that (I'312, T412) # (0,0) or (I's12,T412) = (0,0). First, we
assume that (I'312,T412) # (0,0). Then, the equality
T3 + T35 =Tl + TS0

holds. On one hand, from R2412 = R1213 = 0 and R2312 = —R1214 = 0,
we have

(T34 — I'342)T'312 — (F'341 + T'112)Ta12 = 0,
(341 — T112)T'312 — (T'234 + T'342)T412 = 0.
Since (I's12, C412) # (0,0), we have

1
T3y + T3 =T3y + T3, =4TTs, + nglz-

Thus, we have I'%;, = I'3,,/4, and hence '}, = I',. If we put v = I'%,,
then

5
Ry212 = 2, Ry234 =7, Ryz13 = Riqe = oA

Thus, we have v = Ry34 = Ri313 + R1414 = 57/2, and hence v = 0.
Then, we have A = 0, but this is a contradiction. Next, we consider the
case (I'312,T412) = (0,0). Then, from (3.16), we have I's3q = Ty3q4 =
0. Thus, from (3.20), we have u = 0. Further, from (3.19), we have

2., + T2, =T%,, +T3%,,. Thus, from (3.14), (3.17) and (3.21), we have
A
(3.22) Raszs = —2(F34 + T3yp) = —2Ri313 = 3

Case (I-3). This case is essentially same as Case (I-2).
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Case (I-4). In this case, M is locally the product of Riemannian surfaces
of constant Gaussian curvature A and p.

Case 11

In this case, taking account of Proposition 3, by direct calculation,

we see that

Ri213 =0, Ri214 =0,
R3413 =0, Raqa =0,
Ri314 =0, R34 =0,

(3.23)

Rig04 =0, Rj23 =0,
R3424 =0, R3g03 =0,
Ry323 =0, Riga4 =0,

and Ri212, R1313 = Ri414, R2424 = R2323, R3434 are constant. Further,
we see that T312, Ty12, T334, T34, T132, T231, T142, T241 are constant, and

(3.24)
T132 + 1231 =0,

Ty42 +To41 =0,

T = Tijk

?

(1<4,5,k<4).

Thus, from direct calculation, we have

ViRi213 = —T132(Ri212 — 4R1313),
ViRi214 = —T142(Ri212 — 4R1313),

VaR1213 = Toa1(Ri212 — 4R1313),

VaRi214 = —T231(Ri212 — 4R1313),

and hence,

Ty33 — T'132
3.25
(3:25) Tog

To31 — 231

Further, we get

ViR3413 = ['i32(R3434 — 4R1313),
V1R3414 = T'42(Ra434 — 4R1313),

VaR3413 = —T'241(R3434 — 4R1313),

VaRs3414 = I'o31(R3434 — 4R1313),

and hence,

(Ti32 — T'132)(R3434 — 4R1313
(3.26) (Tia2 — T142)

(T2a1 — Ta41)

(T2s1 — T'a31)

( )(Ri212 — 4R1313) =
(Th42 — C142)(Ra212 — 4R1313) =
( — Tog1)(Ri212 — 4Ry313) =
( J(Ri212 — 4R1313) =

( )
(R3434 — 4R1313)
(R3434 — 4R1313)
(R3434 — 4R1313)

ViRi213 = —T132(Ri1212 — 4R1313),
ViRi214 = —T142(Ri212 — 4R1313),
VaRi213 = To41(Ri1212 — 4R1313),

V2Ri214 = —T231(R1212 — 4R1313),

)

3

0
0
0,
0.

Vi1R3413 = T132(R3434 — 4R1313),
V1R3414 = T142(R3434 — 4R1313),
VaR3413 = —T241(R3434 — 4R1313),
VaR3414 = T231(R3434 — 4R1313),

)

It

’

0
0,
0
0
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Thus, from (3.25) and (3.26), we see that (R1212 — 4R1313, R3434 —
4R1313) = (0,0) or (Ri212 — 4R1313, R3434 — 4R1313) # (0,0). First,
we assume that (Ry212 —4R1313, R3434 —4R1313) = (0,0). Then, we have

A= —Ri12 — Ri313 — Ri414 = —6R1313 = —R3434 — 2R1313 = p.
But, this is a contradiction, and hence (Rj212 —4R1313, R3434 —4R1313) #
(0,0). In this case, we have

I3z = Thsg, Laz1 = Toan, 142 = Thao, Ia41 = Toa,
and hence, from (2.6), (2.7) and (3.24), we have

I3 =T231 =T142 = T2 = 0.

Therefore, (M, J,g) is locally the product of Riemannian surfaces of
constant Gaussian curvature A and p.

Case IT

This case is essentially same as Case II.

Case II1

In this case, M is locally the product of Riemannian surfaces of con-
stant Gaussian curvature A and p.

4. Example

In this section, we introduce an Example established by O. Kowal-
ski ([3]) Let M = Ri = { (1,2, 23,T4) € R* | 1 > O} and put

g 10

€1 = —Z175— ey = ————
8331’ Iy Byl’

0 0 1 0
63—@191&;"“\/37_18—%2, 64—\/—518_(1;;
We define an almost Hermitian structure (J, g) by Jey = ez, Jez = ey,
and g(e;,e;) = 05 (1 < 4,5 < 4). Let {e’} be the dual basis of {e;}.
Then, we have

1 1

1 2 3 4

e =——dzx = —xz1dy1, = —~—dx = +/T1dys — /xT1y1dT
1 1, € 14Y1, € ,——1 2, € 10Y2 1y14%2,

and
Q:el/\e2+e3/\e4=dx1/\dy1+d:c2/\dy2.
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Namely, (x1,y1,2,y2) is a Darboux coordinate system of M. With re-
spect to the coordinate system (z1,y1, Z2, y2), the almost complex struc-
ture J is expressed by

j0 10 0,0
6.’171 % 8 8 N 1 6931 ’
ax2 =T axz 1y1 8 ay2 - 1Yy1 57— 8 Yo x1 (9.’B2 .
By direct calculation, we get
1 1
le1, 2] = e, le1,e3] = —5e le1,e4] = 24
[e2, €3] = —eq, le2, e4] =0, les, eq] =0,

and
Fyeo=0, Tu3z3=0, T'1sa=0, I3 =0, Ti24=0, TI134=0,

1
Ioip=-1, T'aiz =0, Ta214=0, Iaa3 =0, Taa =0, Tozq= —3

1 1
by F = O, P == 0, F = -,
9’ 314 323 324 3

1 1
T412=0, TI4u3=0, F414=—§7 F423=§, T424 =0, Ty434=0.

[3120=0, Tz3= T334 =0,

We have also

1 1 1

Ri212 =1, Ria3g 5 Ri313 1 fs =g
1 1 1 1 1
= — R - — — —_ — = — = — =
Ri414 1 Thazs 7 Ra303 T Ray04 1 R3434 57

and otherwise being zero up to sign. Thus, the Ricci eigenvalues are
A = —3/2 and p = 0. We may easily check that (M, J, g) is a Kéhler
manifold. This example corresponds to the case (I-2).
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