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SOME SEQUENCES RESEMBLING HOFSTADTER’S

R. B. J. T. ALLENBY AND RACHAEL C. SMITH

ABSTRACT. A number of variants of Hofstadter’s original sequence
have been investigated. Here we investigate a collection of simi-
larly defined such sequences which give rise to intriguingly different
results.

1. Introduction

In [2], p.138, Hofstadter introduced the sequence H(n), vaguely rem-
iniscent of Fibonacci’s, defined by: H(1) = H(2) = 1 and, for £k >
3,H(k) = Hk— H(k — 1)) + H(k — H(k — 2)). In [1] Problem 2,
p-14, the authors introduced, as a computer exercise, the sequences
Y (k) and Z(k) given by Y (k) = Z(k) = 1(k = 1,2,3) and Y (k) =
Yk-Yk-1)+YEk-Y(k-2)+Y(k—-Y(k—-3)) and Z(k) =
Z(k—Z(k—1))+ Z(k — Z(k — 3)). The former sequence “stops” al-
most immediately (if we regard Y as being undefined for negative ar-
guments) since to evaluate Y (6) we have to call upon the value Y (—1).
Likewise the Z sequence stops because Z(165) calls upon Z(—37). It
appears to be unknown whether H(n) is undefinable for some value
of n. More promising variations of the sequence H are those investi-
gated by Tanny in [3] and Conolly, see [4], pp.127-138. Calling these
sequences T'(n) and C(n) (C(n) is called F(n) in [4]), we have the def-
initions: T(0) = T(1) = T(2) = C(1) = C(2) = 1 and, for k£ > 3,
T(k) =T(k—1—T(k—1))+T(k—2~T(k—2));C(k) = C(k — C(k -
1))+ C(k —1— C(k — 2)). These sequences look very similar except (so
it would seem) that for each power 2% of 2 there are a + 1 integers m
for which C(m) = 2* and « + 2 integers m for which T'(m) = 2%.

Initially unaware of these investigations, the first author investigated
both sequence C and the following “companion” sequences A, B and D
defined as follows:
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(I) A(k) = B(k) = D(k) = 1(k =1,2,3) and,

(IDA(k) = Ak —1— A(k—2))+ A(k — 2 — A(k — 3)),
B(k)=B(k—B(k—-1))+ B(k—2—- B(k—3)),
D(k)=D(k—-D(k—1))+D(k—1-D(k—2))+ D(k—2— D(k—3)),

for k > 4.

We exhibit some of their values below.

What is perhaps most interesting is that these sequences A, B,C, D
behave in totally different ways.

Now it would be easy to generate and investigate many more such
sequences. We finish by looking at just one since its behaviour is also
rather curious. It is defined by E(1) = E(2) = E(3) =1 and E(k) =
E(k—E(k-1)+E(k—1—-E(k-3)), for k> 4.

2. Properties

The sequence C.

n=1 2 3 4 5 6 7 8 9 10
CO+n)=1 1 2 2 3 4 4 4 5 6
C(10+n)=6 7 8 8 8 8 9 10 10 11
C20+n)=12 12 12 13 14 14 15 16 16 16
C(30+n)=16 16 17 18 18 19 20 20 20 21
CA0+n)=22 22 23 24 24 24 24 25 26 26
C(50+n)=27 28 28 28 29 30 30 31 32 32
C(60+n)=32 32 32 32 33 34 34 35 36 36
C(70+n)=36 37 38 38 39 40 40 40 40 41
C(80+n)=42 42 43 44 44 44 45 46 46 47
C(90+n) =48 48 48 48 48 49 50 50 51 52

The most obvious (apparent) property of sequence C which is not
mentioned in [4] (but is proved true in [3], Proposition 2.1, for sequence

T) is given by
THEOREM 1. For alln,C(n) =C(n — 1)+ r wherer =0 or 1.

Proof. The result claimed is true for the first few values of n. Suppose
that the result claimed is true for all n < k and consider C(k) —C(k—1)
which, after slight rearrangement, may be written,

(1) {Clk—Ck-1)) - Clk —1—C(k —2))}
4+ {Ck—1-Clk—2))~C(k—2—C(k—3))}.
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Now, by the induction hypothesis, we know that C(k—1) = C(k—2)+s
and C(k —2) = C(k — 3) +t where s,t € {0,1}. If s = 1 then the
two arguments in the first bracket are equal, hence the first bracket is
0. Likewise, for the second bracket if £ = 1. On the other hand, if ¢t =0
(and s = 1) we see that the arguments in the second bracket differ by 1.
Hence, by the induction assumption, C(k -1 - C(k—2)) —C(k—2 —
C(k — 3)) is equal to 0 or 1. Consequently C(k) —C(k—1)=0or 1in
the cases (s,t) = (1,1),(1,0),(0,1). It remains only to consider the case
where s =t = 0. In this case we have C(k — 1) = C(k - 2) = C(k - 3).
But then,

0=Ck—1)~Clk—2)
2) ={C(k-1~C(k—2)) - Clk—2-C(k—3))}
+ {Ck—2-C(k—3)) - Clk—3-C(k—4))}.

Since, by hypothesis, C(k — 3) = C(k —4) +w where w = 0 or 1, we see
that the only possibility from (2) is that each bracket is 0. Returning to
(1) we see that C'(k) — C(k — 1) < 1 since the second bracket of (1) is 0
when C(k—-1)=C(k-2) =C(k — 3).

Immediate consequences of Theorem 1 also proved, in [3], Corollary
2.2, for the sequence T, include (i) the C sequence is non-decreasing and
“hits” every positive integer; (ii) each odd integer is hit exactly once;
(iii) each even integer is hit at least twice. Deeper properties of C(n)
and T'(n) can be found in [3] and [4]. a

The sequence A. We can dispose of the main property of the A
sequence quickly: Since A(891) = 945 we find that A(893) cannot be
evaluated!

The sequence B.

n=1 2 3 4 5 6 7 8 9 10
B(0+n)—1112233445
(10+n)=5 6 6 7 7 8 8 9 9 10
(20+n)—10 11 11 12 12 13 13 14 14 15
(30+n)=15 16 16 17 17 18 18 19 19 20
B(40+n)=20 21 21 22 22 23 23 24 24 25
B(50+n)=25 26 26 27 27 28 28 29 29 30

B
B
B

Sequence B generates a seemingly obvious pattern. We leave the
reader the straightforward task of verifying that, for n > 1, B(2n) =
B(2n+1)=n.

Our main interest in this paper is in
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The sequence D.

n=1 2 3 4 6 7 8 9 10
D(o+n)_1 1 1 3 3 5 5 7 5
10+ n 79 9 11 11 13 11 15

5
3
( )= 9

(20+n)—13 17 13 17 15 19 17 19 17 21

(30+n)=19 23 19 23 21 25 23 25 25 27

(40+n)=27 27 29 29 31 29 33 31 35 31

(50+n)=37 33 39 33 41 35 43 35 43 37

(60+n)=45 39 45 39 47 41 49 41 49 43

( ) 53 47 55 47 57 49

( ) 61 53 61 55 63 57

) 67 59 67 61 69 63

) 73 65 73 67 75 69

) 77 75 79 77 79 79

83 85 83 87 85 89

70+n) =51 45 51 45
80+n) =59 49 59 51
(90 +n) =63 57 65 59
1004+n)=69 63 71 65
1104+n)=75 71 77 73
D(120 +n) =81 81 81 83

eivEvEvivivEviwlv)

|5

Here is a later part of this sequence.

n=1 2 3 4 ) 6 7 8 9 10
D(340+n) =219 231 221 233 223 233 225 235 227 235
D(350 +n) =229 237 231 237 233 239 235 239 237 241
D(360 +mn) =239 241 241 243 243 243 245 245 247 245
D(370+n) =249 247 251 247 253 249 255 249 257 251
D(380+n) =259 251 261 253 263 253 265 255 267 255

(For the significance of the underlined terms, see below.)

Sequence D appears to have a number of interesting properties. Amo-
ngst these are the followings.

(i) For each t > 0, D(t + 2) — D(¢) € {0,2}. If true then:

(ii) For each n > 0, D(n) < n. Consequently D(n) is defined for all
n.

(iii} No three successive alternate terms are equal. If true then:

(iv) No integer appears more than four times in the sequence.

(v) No four successive terms are equal.

(vi) The only cases where three successive terms are equal occurs
where the terms are 3* for some k - and then the first occurrence of 3%
is at the (1+3+--- + 3*)th term.

(vii) The difference D(2t)—D(2t—1) changes sign around those values
of n for which both D(2n) — D(2n — 1) and D(2n+2) — D(2n+ 1) are
both 0, these values of n being 3,6, 21, 60, 183, 546, 1641,4920 (so that
each is 3 times its predecessor plus or minus 3).
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(viii) For no three successive pairs D(k), D(k — 1) is their difference
0.

We prove (i), (i), (iii), (iv), (v), part of (vii) and (viii), leaving (vi)
and the rest of (vil) as conjectures - which we hope the theorems below
will assist in proving. Given the relative complexity of some of the proofs
below, it is not surprising that, as yet, we can see no way of establishing
these interesting conjectures.

REMARK. These conjectures have now been established in a submit-
ted paper “On the behaviour of a form of meta-Fibonacci sequences” by
Joseph Callaghan, John J. Chew, III and Stephen M. Tanny.

We begin, then, with

THEOREM 2. For each positive integer t, the differences D(t 4 2) —
D(t) can only take the value 0 or 2.

Proof. This is similar to that of Theorem 1. We see that D(n)—D(n—
2) € {0,2} holds for the first few terms of the D sequence. Suppose this
difference is valid for all n < k. Consider the difference D(k) — D(k — 2)
which we rewrite as

{D(k—D(k —1)) — D(k— 2 — D(k — 3))}
(3) + {D(k—1-D(k—2)) - D(k—3— D(k — 4))}
+ {D(k—-2-D(k—3))~ D(k—4— D(k - 5))}.

{We call this kind of rewriting a pairing.} If D(k—1) = D(k—3)+2 then
the two arguments in the first bracket are equal - hence the first bracket
has value 0. Likewise for the other two brackets. On the other hand, if
D(k—1) = D(k—3) then the arguments in the first bracket differ by 2 and
the bracket itself can take value 0 or 2. Let V(m) denote the difference
D(m—1)—D(m—3). The above reasoning shows us that D(k)—D(k—2)
has value 0 or 2 if (V(k),V(k—1),V(k—2)) = (2,2,2) or (2,2,0) or
(2,0,2) or (0,2,2). Let us consider the case (V(k),V(k—1),V(k—-2)) =
(2,0,0). This means that V(k — 1) = D(k —2) — D(k —4) = 0. But
Dk ~2) —D(k—4) = {D(k—2~ D(k —3)) — D(k — 4 — D(k —
5Ny +{D(k—-3—-D(k—-4))—Dk—-5—-D(k—6)}+{Dk—4-—
D(k—=5))— D(k—6— D(k—7))} and, by our previous arguments, each
bracket has value 0 or 2. Hence each bracket has value 0. In particular
D(k—2-D(k—3))—D(k—4—D(k—5)) = 0. That is, the final bracket
of (3) is 0. It follows that, in the (2,0,0) case, D(k) — D(k — 2) has value
0 or 2.
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Likewise, in the case (V(k),V(k — 1),V (k - 2)) = (0,2,0) we know
that 0 = D(k—1)—D(k—3) ={D(k—1-D(k—2))—D(k—3—-D(k—
)} +{Dk—-2-D(k-3))—D(k—4-D(k-5))}+{D(k—-3—-D(k—
4))—D(k—5— D(k—6))} from which we deduce that D(k —2— D(k —
3)) — D(k—4— D(k —5)) =0 and then that (3) has value 0 or 2.

An identical argument deals with the case (V' (k), V(k—1),V(k—2)) =
(0,0,2). Finally, if (V(k),V(k-1),V(k—-2)) =(0,0,0) we deduce from
V(k) = 0, that, in (3), both D(k — 1 — D(k — 2)) — D(k — 3 — D(k — 4))
and D(k—2— D(k—3)) — D(k—4— D(k —5)) are 0 - and hence that
D(k) — D(k —2) = 0 or 2. There follows immediately. O

COROLLARY 3. For all positive integers n we have D(n) < n. (Hence
D(n) is well defined for all positive integers n).

Making much use of the “pairing method” introduced above we next
prove:

THEOREM 4. In the D sequence no three successive (alternate) terms
are equal.

Proof. Suppose to the contrary that for some integer k we have
D(k) = D(k+2) = D(k+4) = a, (such a triple we shall call a trio) and
that k is the least integer for which such a trio occurs. Then, taking
D(k — 1) = b, we see that, if D(k+ 1) = b then D(k —3) = b — 2 and
D(k + 3) = b+ 2 (by Theorem 2 and the definition of k). Similarly we
must have D(k —2) = a — 2. We have three cases which we denote by:

k+n n= -3 -2 -10 1 2 3 4
case(i) b—2 a—-2 b a b a b+2 a
case(ii) ? a—-2 b a b+2 a b+2 a
case(ii1) ?7 a-2 b a b+2 a b+4 a

In case (i) we have 0 = D(k+4) - D(k+2) = {D(k+4— D(k +
3))-D(k+2—-D(k+1)}+ {D(k+3-D(k+2))-D(k+1-D(k))}+
{D(k+2-D(k+1)) — D(k— D(k—1))}, that is

0={D(k+4-(b+2))—Dk+2-0>)}
(4) + {D(k+3—a)-D(k+1-a)}
+ {D(k+2-b)— D(k—-b)}.

Here each bracket must be 0. In an identical way we obtain 2 =
{Dk+3—a)—-D(k+1—a)}+{D(k+2-5b)—D(k-b}+{Dk+
1-a)—D(k—-1-(a-2))}

This is impossible since, from (4) each of the first two brackets is 0
and, trivially, so is the third.
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In case (iii) we find that 2 = D(k+3) - D(k+1) = {D(k+3—a) —
D(k+1-a)}+ {D(k+2—-(b+2))—D(k—b)}+{D(k+1—a)—D(k—1—
(a—2))}, so that, this time, D(k + 3 — a)) — D(k + 1 — a) = 2. However
a—(b+4) =D(k+4)— D(k+3) = (on eliminating two pairs of terms)
D(k+4—D(k+3))~D(k+1—D(k)) = D(k+4~ (b+4))— D(k+1—a)
whereas (b+4) —a=D(k+3)—-D(k+2)=D(k+3—-D(k+2)—
D(k—D(k—1)) = D(k+3—a)— D(k—b) from which the contradiction
D(k+3—a))—D(k+1—a) =0 follows. Thus only case (ii) remains. In
that case we argue as follows: first, a — (b+2) = D(k+4) - D(k+3) =
D(k+4—D(k+3))—D(k+1—D(k)) = D(k+4— (b+2)) — D(k+1—a).
Similarly, (b+2)—a = D(k+3)—D(k+2) = D(k+3—a)— D(k—b) whilst
a—(b+2)=D(k+2)—D(k+1) = D(k+2—(b+2))—D(k—1—(a—2))
and a—b=D(k) — D(k —1) = D(k — b) — D(k — 3 — D(k — 4)).

These equalities imply that D(k + 2 — b) = D(k — b) and

(5) D(k+3—-a)=D(k+1-a).

Next 0 = D(k+2)— D(k) = {D(k+2—D(k+1))— D(k—D(k—1))}+
{D(k+1-D(k))-D(k—-1-D(k—-2)}+{D(k—-D(k—1))— D(k—
2-D(k-3)}=0+0+{D(k—0b)) - D(k—2-D(k-3))}.

From this it follows that D(k —3) # b for, if it were, we could deduce
that D(k —b) = D(k — 2 — b) and then (4) would show the existence of
an earlier trio than the a,a,a we started with. Hence, by Theorem 2,
D(k—-3)=b-2.

Next 2=D(k+1)—-D(k—1)={D(k+1—a)—D(k—1—(a—2))}+
{D(k-b))—D(k—2—(b—2))}+{D(k—1~(a~2)))—D(k—3—D(k—4))}.

We deduce that D(k — 4) # a — 4 (since the last bracket cannot be
0). Hence D(k — 4) = a — 2 which, in turn, implies D(k + 1 — a) =
D(k —1—a) 4+ 2. Finally, looking at 2 = D(k) — D(k — 2) in the same
way we find D(k — 5) = b — 4 {since D(k — 5) = b — 2 would again give
the trio D(k + 2 —b), D(k — b), D(k — 2 — b).} Thus, so far our case(ii)
sequence looks like:

b —4,a—-2,b-2,a—-2,b,a,b+2,a,(b+2,aq,...).

We notice that the “b”s appear to have begun descending by 2 every
[{P%})

(alternate) step whereas the “a”’s descend likewise, but only after re-
peating. 0O

We now show that once this pattern sets in it persists. That is we
show, for case (ii),
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LEMMA 5. Using the numbering introduced above, for all non neg-
ative integers t, the values of D(k — (4t — 2)),D(k — (4t — 1)), D(k —
4t), D(k — (4t + 1)) are given by a — 2t,b — 4t + 2,a — 2t,b — 4t.

Proof. We prove this not in blocks of four successive values of D
but in blocks of eight successive values of D. That is, we prove, for all
non negative integers s that the values of D(k — (8s —2)), D(k — (8s —
1)), D(k — 8s),D(k — (8s+ 1)), D(k — (8s +2)), D(k — (8s + 3)), D(k —
(85 +4)),D(k — (8s+5)) are a — 4s,b —8s + 2,a — 4s,b — 8s,a — 4s —
2,0—8s—2,a—4s5s—2,b—8s—4. Certainly these values are correct for
s = 0. Suppose them valid for all s < n.

First note that 2 = D(k—(8n))—D(k—(8n+2)) = {D(k—[8n]—D(k—
[8n+1]))—D(k—[8n+2]—D(k—[8n+3])) }+ {D(k—[8n+1]—-D(k—[8n+
2]))—D(k—[8n+3]—D(k—[8n+4])) }+ {D(k—[8n+2] —D(k—[8n+3]))—
D(k—[8n+4]—D(k—[8n+5]))} = {D(k—[8n]—(b—8n))—D(k—[8n+2]—
(b—8n—2))}+ {D(k—[8n+1]—(a—4n—2))—D(k—[8n+3]—(a—4n—2)) }+
{Dk—[8n+2]—(b—8n—2)) —D(k—[8n+4] — (b —8n —4))}.

Since the first and third brackets are trivially 0 the second bracket
shows that D(k —4n+1—a) — D(k —4n —1—a)) = 2. Next: D(k —
[8n + 6]) cannot have value a —4n — 2 since that would give rise to three
successive (alternate) equal values D(k — [8n + r]),r = 6,4,2. Hence
D(k—[8n+6]) =a—4n —4.

To determine the value of D(k — (8n+7)) we look at 0 = D(k— (8n+
2))—D(k—(8n+4)) = {D(k—[8n+2]—D(k—[8n+3])) — D(k—[8n+
4] - D(k [8n—|—5]))}+ {D(k [8n—+—3] D(k [8n+4])) D(k—[8n+
5| — D(k—[8n+6])}+ {D(k—[8n+4] — D(k— [8n+5])) — D(k — [8n+
6] — D(k — [8n +7]))}.

If D(k — [8n+7]) = b— 8n — 4 then the last bracket’s being 0 would
give D(k — [8n+4] — (b—[8n +4])) = D(k — [8n + 6] — (b — [8n + 4]))
i.e. D(k—b) = D(k—b— 2) thus giving trio trio D(k — b —2), D(k — b)
and D(k — b+ 2) again.

To determine the value of D(k — (8n + 8)) we correspondingly look
at 2= D(k— (8n+3)) — D(k — (8n +5)) = {D(k — [8n + 3] — D(k —
[8n+4])) — D(k—[8n+5]— D(k— [8n+6]))}+ {D(k— [8n+4] — D(k -
[8n+5])) — D(k — [8n +6] — D(k — [8n+7)))}+ {D(k— [8n+5] — D(k —
(8n + 6])) — D(k — [8n + 7] — D(k — [8n + 8]))}.

The first two brackets are 0 by the previous step. Hence the final
bracket has value 2. Therefore D(k — [8n + 6]) # D(k — [8n + §]) + 2,
that is, D(k — [8n + 8]) = D(k — [8n + 6]) = a — 4n — 4.

To determine the value of D(k — (8n+9)) we correspondingly look at
2=D(k—-(8n+4))-D(k—(8n+6)) ={D(k—[8n+4] - D(k—[8n+
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51)) — D(k—[8n+6] — D(k— [8n+7)))}+ {D(k—[8n+5] — D(k— [8n+
6])) —D(k—[8n+7)— D(k— [8n+8))) }+ {D(k—[8n+6] — D(k —[8n+
7)) — D(k — [8n + 8] — D(k — [8n+9]))}. The previous step shows that
the middle bracket has value 2. Hence the final bracket has value 0. If
D(k — [8n + 9]) = b — 8n — 6 the final bracket above would again give
D(k—b) = D(k—b—2) and hence the earlier trio D(k —b—2), D(k—b)
and D(k — b+ 2).

As with D(k—[8n+6]) we see that D(k—(8n+10)) # a—4n—4 and so
D(k—[8n+10]) = a—4n—6. The cases D(k—(8n+r)),r = 11,12,13 can
be dealt with similarly thus completing the induction part of the proof
of Theorem 4. To finish Theorem 4 entirely we only need to observe
that the pattern ..., b—6,b—4,b—2,b,b+ 2, ... in alternating terms is
not present from the start of the sequence D. This completes the proof
of Theorem 4. (]

An immediate corollary is

COROLLARY 6. No integer occurs in the D sequence more than four
times.

We now prove

THEOREM 7. For no value of k do we have D(k) = D(k+1) =
D(k+2) = D(k + 3). (Such a quadruplet we shall call a foursome.)

Proof. Suppose these values are equal, to a, say, and that k is the first
such integer for which this happens. We therefore have D(k—1) = a —2
and D(k +4) = a+ 2, by Theorem 4. Thus D(k —2) =a — 2.

Now using the same techniques as in Theorem 4 we have: First:
0 = D(k+3)— D(k+1) implies that D(k+3—a)—D(k+1—a) =0 and
D(k+1—a)=D(k—1—-D(k—2)). Hence D(k —2) # a; for otherwise
D(k+r —a),r=-1,1,3, would be a trio contrary to Theorem 4.

Next 0 = D(k+3)—D(k+2) = D(k+3—D(k+2))—D(k—D(k—-1)) =
D(k+3—a)—D(k—(a—2))and 0=D(k+2)— D(k+1)=D(k+2—
Dk+1)—Dk—-1-D(k—-2)=Dk+2—-a)—Dk~1—(a—2)).

Therefore

(6) D(k+3—a)=D(k+2—~a)=D(k+1-a).

Next 0 = D(k+2) — D(k) implies that D(k — D(k—1)) = D(k~2—
D(k—3)) =0. If D(k — 3) = a — 2 we should have D(k — (a — 2)) =
D(k — 2 — (a — 2)) which, together with (6) would provide an earlier
foursome. Hence D(k —3) = a — 4.

Next 2 = D(k+1)—D(k—1) = D(k—1—D(k—2))—D(k—~3—D(k—4)).
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It follows that D(k—4) # D(k—2)—2. Hence D(k—4) = D(k—2) =
a — 2 and, hence, D(k+1—a) = D(k — 1 — a) + 2. Finally, using the
last equality, we get 2 = D(k) — D(k —2) = {D(k — (a — 2)) — D(k —
2—(a—4)+{Dk—-1—-(a—2))—Dk—-3-(a—2))}+{D(k—-2~—
(a—4)) —D(k—4—D(k—5))} =0+2+0. Hence D(k —5) # a — 4:
for, if so, we get D(k + 2 — a) = D(k — a) and thus obtain an earlier
foursome again. Hence D(k — 5) = a — 6. The values D(k + r) where

r = —5,—4,-3,-2,-1,0,1,2 are precisely those we used (if we put
b = a — 2) to prove that case (ii) of Theorem 4 was impossible. Hence
we can conclude that Theorem 7 is also proved. O

It is now easy to prove that

THEOREM 8. There is no value of k for which D(k + 5) — D(k +
4), D(k + 3) — D(k + 2), D(k + 1) — D(k) are all 0.

Proof. Suppose that ..., D(k),...,D(k+5),... do have the property
mentioned. By Theorems 2 and 4 we see that this subsequence must be
of the form ...,a,a,a+2,a+2,a+4,a+4,... Then, 2 = D(k +5) —
Dk+3)={Dk+5—-[a+4)-Dk+3-[a+2)}+ {Dk+4—[a+
2)-Dk+2-a)}+{Dk+3—-[a+2))-Dk+1-a)} =04+0+0,
an obvious contradiction

Note that: (i) two pairs D(k) = D(k + 1); D(k + 2) = D(k + 3)
can occur; (ii) one may likewise prove that up to four {but not five}
successive pairs D(k), D(k + 1) with constant (non-zero) difference may
occur. O

In relation to Note (i) we have

THEOREM 9. If D(k) = D(k+1) and D(k+2) = D(k + 3) then one
of D(k —2) — D(k — 1) and D(k +4) — D(k + 5) has value 2, the other
having value —2.

Informally : around a 0-0 pair of successive differences the difference
D(t+ 1) — D(t) changes sign.

Proof. In the subsequence ... D(k—2), D(k—1),a,a,a+2,a+2, D(k+
4), D(k +5),... we must have ...(D(k — 2),D(k — 1)) = (a — 2,a) or
(a,a—2) and (D(k+4),D(k+5))=(a+2,a+4) or (e +4,a+2) by
Theorems 2 and 4. The subsequence

e, a—2,a,a,a,a+2,a+2,a+2,a+4,...

is not possible since 0 = D(k+4)— D(k+3) = D(k+4—[a+2])—D(k+
1—a) whereas 2 = D(k+2)-D(k+1) = D(k+2—a)—D(k—1—[a—2]).
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On the other hand the subsequence
a—2,a,6,a+2,a+2,a+4,a+2,...

is not possible since 2 = D(k+4)—D(k+3) = D(k+4—[a+2])—D(k+
1—a) whereas 0 = D(k+3)—D(k+2) = D(k+3—[a+2])—D(k—[a—2]).

Note The question about D(k + 1) — D(k) changing signs infinitely
often can therefore be rephrased as: do consecutive pairs D(k) = D(k +
1), D(k + 2) = D(k + 3) occur infinitely often? At this moment we are
unable to see how to do this. |

The sequence E.

It is a pity that the definition of the F sequence is slightly unsymmet-
rical but that is more than compensated for by the interesting pattern
it developes — and the fact that this pattern can be proved to persist —
once one has passed the 18th term! To help see the pattern it is best to
arrange the terms of the sequence in blocks of eight:

The terms
n=1 2 3 4 5 6 7 8
EO+n)=1 1 1 2 2 4 3 4
E@8+n)=4 8 5 6 5 8 7 12
E(16 +n) = 6 14 6 13 8 15 8 19
E24+4n)= 20 6 21 8 23 & 27
EB32+4n)= 8 28 6 29 8 31 8 35
E(40+n)=8 36 6 37 8 39 8 43
E(484+n)=8 44 6 45 8 47 8 51
E(B564+n)=8 52 6 53 8 55 8 59
E644+n)=8 60 6 61 8 63 8 67
E(724+n)=8 68 6 69 8 71 8 75
E@B0+n)= 8 % 6 77 8 79 8 83
E(88+n)= 84 6 8 8 87 8 91
E(96 +n) = 8 92 6 93 8 95 8 99

We shall prove the following

THEOREM 10. For each integer n > 3 we have: E(8n—5) = 6; E(8n—
4) =8n—11;E(8n—-3) =8, E(8n—2) =8n—9; E(8n—1) = 8; E(8n) =
8 — 5, E(8n+1) =8; E(8n +2) = 8n — 4.

Proof. The given equalities are seen to be true for n = 3. Suppose
them all true for every n < k and suppose that n = k + 1. Taking them
in turn we get: (i) E(8(k+1) —5) = E(8k+3) = E(8k+ 3 — E(8k +
2))+E(8k+2—FE(8k)) =FE8k+3—(8k—4))+E(8k+2—(8k—5)) =
E(7)+ E(7) =6.
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(i) E(8(k+1)—4) = E(8k+4) = E(8k+4— E(8k+3))+ E(8k+3—
E@8k+1))=E(8k+4—6)+E(8k+3~8)=E(8k—2)+ E(8k~5) =
8k —9+6=8k—3=8(k+1)— 11

(iii) E(8(k+1)—3) = E(8k+5) = E(8k+5— E(8k+4))+ E(8k +4—
E(8k+2)) = F(8k+5—(8k—3))+ E(8k+4—(8k—4)) = E(8)+E(8) = 8.

(iv) E(8(k+1)—2) = E(8k +6) = E(8k+ 6 — E(8k +5)) + E(8k +
5—FE(8k+3)) = E(8k+6—8)+E(8k+5—6) = E(8k—2)+ E(8k—1) =
8k—9+8=8k—1=8Fk+1)—9.

(v) E@(k+1)~1) = E(8k+7) = E(8k+7—E(8k+6)) + E(8k +6—
E(8k+4)) = E(8k+T7—(8k—1))+E(8k+6—(8k—3)) = E(8)+E(9) = 8.

(vi) E8(k+1)) =E(8k+8)=F8k+8—E@®k+T7)+E@Bk+7—
E@B8k+5) =FE@Bk+8—8)+E@8k+T7—-8)=FE@Bk)+FE@Bk—1) =
8k —5+8=28k+3=8(k+1)—5.

(vii) E(8(k+1)+1) = E(8k+9) = E(8k+9— E(8k+8))+ E(8k+8—
E(8k+6)) = E(8k+9—(8k+3))+E(8k+8—(8k—1)) = E(6)+E(9) = 8.

(viil) E(8(k+1)+2) = E(8k+10) = E(8k+10— E(8k+9))+ E(8k +
9—E(8k+7)) = E(8k+10—8)+E(8k+9—8) = F(8k+2)+E(8k+1) =
8k—4+8=8k+4=8(k+1) -4

This completes the induction. O
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