Transdermal Drug Release of Polymer Matrix of Unsaturated Poly(3-hydroxyalkanoate)

불포화 폴리(3-히드록시알칸오에이트)를 기질로 한 경피제제의 약물방출

  • 이수홍 (한국화학연구원 화학소재연구부) ;
  • 신병철 (한국화학연구원 화학소재연구부) ;
  • 이영하 (충남대학교 미생물학과) ;
  • 김형우 (충남대학교 미생물학과) ;
  • 김영백 (배재대학교 고분자공학과) ;
  • 김승수 (한국화학연구원 화학소재연구부)
  • Published : 2003.11.01

Abstract

Unsaturated poly(3-hydroxyalkanoate) (UPHA) was biosynthesized and the properties of drug delivery using the polymer matrix were investigated. The biosynthesis of UPHA was carried out by pH-stat fed batch fermentation of Pseudomonas oleovorans (ATCC 29347) grown solely with 10-undecenoic acid as a carbon source. The physical and chemical properties of the biosynethesized UPHA were characterized using NMR, FT-IR, GPC and DSC. The drug release experiments were carried out using HPLC with a diffusion cell fur the release amount of ketoprofen as model drug. The effects of crosslinking degree, patch thickness, and enhancer on the drug release were studied. The drug release rate was linearly decreased and consistent with increased crosslinking degree of the polymer matrix. The duration of drug release was enhanced by the Increased patch thickness. The drug release rate was increased with increased amount of propylene gylcol as an enhancer.

불포화 폴리(3-히드록시알칸오에이트) (UPHA)를 생합성하고 이 고분자 매트릭스 내에서의 약물방출 경향을 조사하였다. UPHA의 생합성에 사용된 균주는 Pseudomonas oleovorans (ATCC 29347)이고 탄소원은 10-undecenoic acid를 사용하였으며 산-염기조절방법 배취형태 발효법을 이용하여 미생물 배양을 행하였다. 생합성된 UPHA는 $^1$H- 및 $^{13}$C-NMR, FT-IR, GPC 및 DSC 등을 사용하여 물리 및 화학적 분석을 행하였다. 약물방출 실험은 확산셀을 이용하여 모델약물인 케토프로펜의 방출량을 HPLC를 이용하여 측정하였고 UPHA의 가교도, 패취두께, 경피투과 향상제 등의 영향에 대하여 조사하였다. UPHA의 가교도의 증가에 따라 약물방출 속도가 늦어지고 약물방출 속도가 일정해지는 경향을 나타내었다. 경피투과용 패취의 두께가 두꺼워질수록 약물방출 지속시간이 길어지고 경피투과 향상제인 프로필렌 글리콜의 함량 증가에 따라 방출 속도가 향상되는 경향을 나타내었다.

Keywords

References

  1. Biotechnology v.13 Y.Poirier;C,Nawrath;C.Somerville https://doi.org/10.1038/nbt0295-142
  2. FEMS. Micobiol. Lett. v.128 A.Steinbuchel;H.E.Valentin https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
  3. Adv. Microb. Physiol. v.10 E.A.Dawea;P.J.Senior https://doi.org/10.1016/S0065-2911(08)60088-0
  4. Biochem. Soc. Trans. v.16 G.W.Haywood;A.J.Anderson;L.Chu;E.A.Dawes
  5. Arch. Biochem. Biophys. v.254 T.Suzuki;W.L.Zahler;E.W.Emerich https://doi.org/10.1016/0003-9861(87)90103-2
  6. Micobio. Rev. v.54 A.J.Anderson;E.A.Dawes
  7. Environ. Sci. Technol v.8 L.L.Wallen;W.K.Rohwedder https://doi.org/10.1021/es60091a007
  8. Appl. Environ. Microbiol. v.45 R.H.Findlay;D.C.White
  9. Appl. Environ. Microbiol. v.52 G.Odham;A.Runlid;G.Westerdahl;P.Marden
  10. Polymer (Korea) v.18 H.S.Lee;J.S.Lee;J.S.Yoon;H.J.Choi;S.J.Choi
  11. Adv. Drug Del. Rev. v.18 C.W.Pouton;S.Akhtar https://doi.org/10.1016/0169-409X(95)00092-L
  12. Macromolecules v.31 D.Y.Kim;Y.B.Kim;Y.H.Rhee https://doi.org/10.1021/ma980208t
  13. Macromolecules v.31 D.Y.Kim;Y.B.Kim;Y.H.Rhee https://doi.org/10.1021/ma980208t
  14. Controlled Release of Drugs: Polymers and Aggregate Systems C.Alving;R.W.Baker;D.Chapman;A.T.Florence;R.Langer;K.Larsson;L.P.Luigi