Influence of Ag nano-powder additions on the superconducting properties of Mg $B_2$ materials

  • K. J. Song (Korea Electrotechnology Research Institute) ;
  • Park, S. J. (Korea Electrotechnology Research Institute) ;
  • Kim, S. W. (Korea Electrotechnology Research Institute) ;
  • Park, C. (Korea Electrotechnology Research Institute) ;
  • J. H. Joo (Korea Electrotechnology Research Institute) ;
  • Kim, H. J. (Korea Electrotechnology Research Institute) ;
  • J. K. Chung (Korea Electrotechnology Research Institute) ;
  • R. K. Ko (Korea Electrotechnology Research Institute) ;
  • H. S. Ha (Korea Electrotechnology Research Institute)
  • Published : 2003.11.01

Abstract

Silver nano-powder was added to Ma $B_2$ to make (Ag)$_{(x)wt.%}$(Mg $B_2$)$_{(l00-x)wt.%}$ (A $g_{x}$-Mg $B_2$) (10 $\leq$ x $\leq$ 50) composite superconductors to investigate the effect of the Ag nano-powder on the vortex pinning. Pellets made out of the mixed powder were put inside stainless steel tubes, which were sintered at 85$0^{\circ}C$ in Ar atmosphere. No impurity phase was identified for as-rolled samples. However, both the Mg $B_2$ and the A $g_{x}$-Mg $B_2$ composite pellets, when sintered, contain small amount of Mg $B_4$ and MgAg impurity phases. From the magnetization study, it was found that the flux pinning was improved in the high magnetic field region (> 3 T) only when 10w/o Ag was added to Mg $B_2$. The "two step" structures in ZFC M(T) curve gradually increased as the amount of Ag added increased. Pinning centers can be created by adding a suitable amount of Ag nano-powder which is not too large to increase the decoupling between the Mg $B_2$ grains.crease the decoupling between the Mg $B_2$ grains.

Keywords

References

  1. Nature v.401 J.Nagamatsu;N.Nakagawa;T.Muranaka;Y.Zenitani;J.Akimitsu
  2. Phys. Rev. Lett. v.86 D.K.Finnemore;J.E.Ostenson;S.L.Bud'ko;G.Lapertot;P.C.Camfield
  3. Phys. Rev. Lett. v.86 S.L.Bud'ko;G.Lapertot;C.Petrovic;C.E.Cunningham;N.Anderson;P.C.Canfield
  4. Nature v.410 D.C.Labalestier;M.O.Cooley;A.A.Polyanskii;J.Y.Jiang;S.Patnaik;X.Y.Cai;D.M.Feldmann;A.Gurevich;A.A.Squitieri;M.T.Naus;C.B.Eom;E.E.Hellstrom;R.J.Cava;K.A.Regan;N.Rogado;M.A.Hayward;T.He;J.S.Slusky;P.Khalifah;K.Inumaru;M.Hass
  5. Supercond. Sci. & Technol. v.14 J.R.Thompson;M.Paranthaman;D.K.Christen;K.D.Sorge;H.J.Kim;J.G.Ossandon
  6. Phys. Rev. v.B64 S.L.Bud'ko;V.G.Kogan;P.C.Canfield
  7. Phys. Rev. v.B65 S.L.Bud'ko;P.C.Canfield
  8. Phys. Rev. Lett. v.88 M.Angst;R.Puzniak;A.Wisniewski;J.Jun;S.M.Kazakov;J. Karpinski;J.Moos;H.Keller
  9. Phys. Rev. v.B67 U.Welp;A.Rydh;G.Karapetrov;W.K.Kwok;G.W.Crabtree;Ch.Marcenat;L.Paulius;T.Klein;J.Marcus;K.H.P.Kim;C.U.Jung;H.S.Lee;B.Kang;S.I.Lee
  10. Nature v.418 H.J.Choi;D.Roundy;H.Sun;M.L.Cohen;S.G.Louie
  11. Phys. Rev. Lett. v.88 H.Schmidt;J.F.Zasadzinski;K.E.Gray;D.G.Hinks
  12. Phys. Rev. Lett. v.89 M.Lavarone;G.Karapetrov;A.E.Koshelev;W.K.Kwok;G.W.Crabtree;D.G.Hinks;W.N.Kang;Eun-Mi Choi;Hyun Jung Kim;Hyeong-JIin Kim;S.I.Lee
  13. Phys. Rev. Lett. v.89 M.R.Eskildsen;M.Kugler;S.Tanaka;J.Jun;S.M.Kazakov;J.Karpinski;O.Fischer
  14. Nature v.411 S.Jin;H.Mavoori;C.Bower;R.B.van Dover
  15. Appl. Phys. Lett. v.79 G.Grasso;A.Malagoli;C.Ferdeghini;S.Roncallo;V.Braccini;A.S.Siti;M.R.Cimberle
  16. Physica C v.361 S.Soltanian;X.L.Wang;I.Kusevic;E.Babic;A.H.Li;M.J.Qin;J.Horvat;H.K.Liu;E.W.Collings;E.Lee;M.D.Sumption;S.X.Dou
  17. Appl. Phys. Lett. v.79 H.Kumakura;A.Matsumoto;H.Fujii;K.Togano
  18. Supercond. Sci. & Technol. v.14 C.Buzea;T.Yamashita
  19. Physica C v.370 K.J.Song;N.J.Lee;H.M.Jang;H.S.Ha;D.W.Ha;S.S.Oh;M.H.Sohn;R.K.Ko;C.Park;Y.K.Kwon;K.S.Ryu
  20. IEEE Trans. Appl. Supercond. v.13 K.J.Song;C.Park;N.J.Lee;H.M.Jang;H.S.Ha.D.W.Ha;S.S.Oh;M.H.Sohn;R.K.Ko;Y.K.Kwon;J.H.Joo
  21. 2003 EUCAS Sorrento meeting 100m long MgB₂ JR Tokai and Hitachi Co. and Hyper Tech Research Inc
  22. Phys. Rev. Lett. v.8 C.P.Bean
  23. Rev. Mod. Phys. v.36 C.P.Bean
  24. Appl. Phys. Lett. v.81 J.Wang;Y.Bugoslavsky;A.Berenov;L.Cowey;A.D.Caplin;L.F.Cohen;J.L.MacManus Driscoll;L.D.Cooley;X.Song;D.C.Larbalestier
  25. Appl. Phys. Lett. v.81 S.X.Dou;S.Soltanian;J.Horvat;X.L.Wang;S.H.Zhou;M.Lonescu;H.K.Liu;P.Munroe;M.Tomsic
  26. Sci. & Technol. v.16 D.Kumar;S.J.Pennycook;J.Narayan;H.Wang;A.Tiwari;Supercond
  27. Appl. Phys. Lett. v.82 Qiang,Li;G.D.Gu;Y.Zhu
  28. Supercond. Sci. & Technol. v.11 J.Joo;J.G.Kim;W.Nah
  29. Cryogenics v.39 J.Joo;S.B.Jung;W.Nah;J.Y.Kim;T.S.Kim
  30. Magnetic Susceptibility of Superconductors and Other Spin Systems J.R.Thompson;D.K.Christen;H.R.Kerchner;L.A.Boatner;B.C.Sales;B.C.Chakoumakos;H.Hsu;J.Brynestad;D.M.Kroeger;J.W.Williams;Yang,Ren,Sun;Y.C.Kim;J.G.Ossandon;A.P.Malozemoff;L.Civale;A.D.Marwick;J.K.Worthington;L.Krusin-Elbaum;F.Holtzberg;R.A.Hein(ed.);T.Francavilla(ed.);D.Lieben burg(ed.)