References
- Desalination v.143 Distillation vs. membrane filtration: overview of process evolutions in seawater desalination B.V.d.Bruggen;C.Vandecasteele https://doi.org/10.1016/S0011-9164(02)00259-X
- Reverse osmosis technology: applications for high-purity water production H.F.Ridgeway
- Environ. Progress v.17 Membrane separation processes for clean production D.Paul;K.Ohlrogge https://doi.org/10.1002/ep.670170310
- Proceedings of the ASNE Environmental Symposium "Environmental Stewardship: Ships and Shorelines" Evolution in U.S. navy shipboard sewage and graywater programs D.J.Demboski;J.H.Benson;G.E.Rossi;N.S.Leavitt;M.A.Mull
- Sep. Sci. Tech. v.26 Small-scale membrane systems for the recovery and purification of water R.J.Ray;S.B.McCray;D.D.Newbold https://doi.org/10.1080/01496399108050522
- Desalination v.35 Concentration polarization and fouling E.Matthiasson;B.Sivik https://doi.org/10.1016/S0011-9164(00)88604-X
- J. Food Proc. v.4 Factors effecting the mechanism of flux decline during ultrafiltration of cottage cheese whey U.Merin;M.Cheryan https://doi.org/10.1111/j.1745-4549.1980.tb00604.x
- Membrane Science and Technolohy W.F.Blatt;A.Dravid;A.S.Michaels;L.Nelson
- Chem. Eng. Sci. v.29 Improving permeation flux by pulsed reverse osmosis T.J.Kennedy;R.L.Merson;B.J.McCoy https://doi.org/10.1016/0009-2509(74)85010-4
- J. Membrane Sci. v.81 Dean vortices with wall flux in a curved channel membrane system. 6. Two dimensional magnetic resonance imaging of the velocity field in a curved impermeable slit K.Y.Chung;W.A.Edelstein;G.Belfort https://doi.org/10.1016/0376-7388(93)85039-Y
- AIChE J. v.39 Dean vortices in a curved channel membrane system: 5 Three dimensional magnetic resonance imaging and numerical analysis of the velocity field in a curved impermeable tube K.Y.Chung;W.A.Edelstein;X.Li;G.Belfort https://doi.org/10.1002/aic.690391003
- Water Res. v.34 Partcle fouling of a rotating membrane disk J.Engler;M.R.Wiesner https://doi.org/10.1016/S0043-1354(99)00148-7
- Ind. Chem. Eng. v.31 High-speed microfiltration using a rotating cylinderical ceramic Membrane T.Murase;E.Iritani;P.Chidphong;K.;Kano;K.Atsumi;M.Shirato
- Fluid mechanics of a rotating filter separator R.M.Lueptow
- J. Membrane Sci v.77 Diagnosis of membrane fouling using a rotating annular filter. 1. Cell culture media G.Belfort;J.M.Pimbley;A.Greiner;K.Y.Chung https://doi.org/10.1016/0376-7388(93)85231-K
- J. Membrane Sci. v.77 Diagnosis of membrane fouling using a rotating annular filter. 2. Dilute particle suspensions of know particle size G.Belfort;P.Mikulasek;J.M.Pimbley;K.Y.Chung https://doi.org/10.1016/0376-7388(93)85232-L
- AIChE J. v.37 Quantitative description of ultrafiltration in a rotating filtration device U.B.Holeschovsky;C.L.Cooney https://doi.org/10.1002/aic.690370811
- Microfiltration and Ultrafiltration: Principles and Applications L.J.Zeman;A.L.Zydney
- Int. J. Artificail Organs v.10 Dooner Plasmapheresis: A Comparative Study Using Four Different Types of Equipment P.Perseghin;A.Pagani;P.M.Fornasari;L.Salvaneschi
- US Patent, 5,034,135 Blood Fractionation System and Method H.Fischel;W.F.McLaughlin
- J. Membrane Sci v.36 Dynamic filtration of microbial suspensions using an axially rotating filter K.H.Kroner;V.Nissinen https://doi.org/10.1016/0376-7388(88)80009-7
- 12th International Couette Taylor Workshop Rotating reverse osmosis system based on Taylor-Couette flow S.Lee;R.M.Lueptow
- J. Membrane Sci v.192 Rotating reverse osmosis: a dynamic model for flux and rejection S.Lee;R.M.Lueptow https://doi.org/10.1016/S0376-7388(01)00493-8
- Desalination v.146 Experimental Verification of a Model for Rotating Reverse Osmosis S.Lee;R.M.Lueptow https://doi.org/10.1016/S0011-9164(02)00512-X
- Desalination v.155 Control of Scale Formation in Reverse Osmosis by Membrane Rotation S.Lee;R.M.Lueptow https://doi.org/10.1016/S0011-9164(03)00290-X
- Sep. Sci. Tech. Medel predictions and experiments for rotating reverse osmosis for space missions water reuse S.Lee;R.M.Lueptow
- Final Report, Final Report Grant # NAG 9-1053 Rotating Membrane Water Purification for Long-Term Human Presence in Space R.W.Lueptow
- Research Proposal, Grant # NAG 9-1053 Rotating Membrane Water Purification for Long-Term Human Presence in Space R.W.Lueptow
- Research Proposal, Grant # NAG 9-1053 Advancing Rotating Membrane Water Purification for Human Life Support in Space R.W.Lueptow
- Bioastronautics Investigators Workshop 2001 Rotating Membrane Water Purification for Long-Term Human Presence in Space S.Lee;R.W.Lueptow
- Phil. Trans. A v.223 Stability of a viscous liquid contained between two rotating cylinders G.I.Taylor https://doi.org/10.1098/rsta.1923.0008
- Hydrodynamic and Hydromagnetic Stability S.Chandrasekhar
- J. Fluid Mech. v.9 The stability of a viscous fluid between rotating cylinders with an axial flow R.C.DiPrima
- Int. J. Heat Mass Transfer v.20 Heat/mass transfer in Taylor vortex flow with constant axial flow rates K.Kataoka;H.Doi;T.Komai https://doi.org/10.1016/0017-9310(77)90084-9
- Benard Cell and Taylor Vortices E.L.Koschmieder
- Phys. Rev. E v.48 Taylor vortex formation in axial through-flow: Linear and weakly nonlinear analysis A.Rectenwald;M.Lucke;H.W.Muller https://doi.org/10.1103/PhysRevE.48.4444
- Proc. R. Soc. Lond. A v.366 The stability of viscous flow between rotating concentric cylinders with an axial flow R.C.DiPrima;A.Pridor https://doi.org/10.1098/rspa.1979.0069
- Exp. Fluids v.17 Circular Couette-Flow with Pressure-Driven Axial-Flow and a Porous Inner Cylinder K.Min;R.M.Lueptow https://doi.org/10.1007/BF00190916
- Phys. Fluids v.6 Hydrodynamic Stability of Viscous-Flow between Rotating Porous Cylinders with Radial Flow K.Min;R.M.Lueptow https://doi.org/10.1063/1.868077
- Ultrafiltration in rotary annular flow M. Lopez-Leiva
- J. Membrane Sci v.157 A study on dynamic separation of silica slurry using a rotating membrane filter: 2. Modelling of cake formation C.K.Choi;J.Y.Park;P.W.C.;J.J.Kim https://doi.org/10.1016/S0376-7388(98)00377-9
- J. Membrane Sci v.97 A study on dynamic separation of silica slurry using a rotating membrane filter: 1. Experiments and filtrate fluxes J.Y.Park;C.K.Choi;J.J.kim https://doi.org/10.1016/0376-7388(94)00167-W
- Journal of Membrane Science v.209 Particle-fluid velocities and fouling in rotating filtration of a suspension S.T.Wereley;A.Akonur;R.M.Lueptow https://doi.org/10.1016/S0376-7388(02)00365-4
- Physica D v.167 Chaotic mixing and transport in wavy Taylor Couette flow A.Akonur;R.M.Lueptow https://doi.org/10.1016/S0167-2789(02)00529-8
- J. Membrane Sci v.204 Design parameters for rotating cylindrical filtration J.Schwille;D.Mitra;R.M.Lueptow https://doi.org/10.1016/S0376-7388(02)00016-9
- Membrane Handbook W.S.W.Ho;K.K.Sirkar
- Ultrafiltration and Microfiltration Handbook M.Cheryan
- Liquid-liquid extraction based on a new flow pattern: two fluid Taylor-Couette flow computational fluid dynamics G.Baier
- Chem. Eng. Sci. v.54 Prediction of mass transfer in spatially periodic systems G.Baier;T.M.Grateful;M.D.Graham;E.N.Lightfoot https://doi.org/10.1016/S0009-2509(98)00234-6
- 13th International Couette-Taylor Workshop Mass Transfer in Rotating Reverse Osmosis Based on Couette-Taylor Flow S.Lee;R.M.Lueptow
- Adv. Heat Transfer v.7 The electrochemical method in transport phenomena T.Mizushina https://doi.org/10.1016/S0065-2717(08)70017-0
- Elecrochimica Acta v.26 Mass transfer at the eletrodes of concentric cylindrical reactors combining axial flow and rotation of the inner cylinder F.Coeuret;J.Legrand https://doi.org/10.1016/0013-4686(81)85047-5
- Electrochimica Acta v.33 Laminar mass transfer between concentric rotating cylinders in the presence of Taylor vortices Y.Kawase;J.J.Ulbrecht https://doi.org/10.1016/0013-4686(88)80003-3
- Water Chemistry V.L.Snoeyink;D.Jenkins
- 17th Annual Meeting of American Society of Gravitational and Space Biology Rotating reverse osmosis for wastewater recovery in manned space missions R.M.Lueptow;S.Lee
- AlChE 2002 Annual Meeting Rotating Reverse Osmosis: Effect of Operating Conditions S.Lee;R.M.Lueptow
- 32nd International Conference on Environmental Systems (ICES) Space Mission Wastewater Recovery System Using Rotating Reverse Osmosis: Process Simulation S.Lee;R.M.Lueptow
- Science and Technology of Filtration and Separation for the 21st Century Rotating reverse osmosis filtration for space missions S.Lee;R.M.Lueptow
- AWWA Membrane Conference A novel RO membrane technique based on Taylor-Couette flow for scale control in water desalination S.Lee;R.M.Lueptow
- Research proposal to NSF Nanoparticle Photocatalysis to Prevent Biofouling R.M.Lueptow;K.Gray
- Int. J. Heat Mass Transfer v.29 no.12 Mass transfer at smooth and rough Surfaces in a circular Couette flow J.Grifoll;X.Farriol;F.Giralt https://doi.org/10.1016/0017-9310(86)90009-8
- Electrochimica Acta v.25 Overall mas transfer to the rotating inner electrode of a concentric cylindrical reactor with axial flow J.Legrand;P.Dumargue;F.Coeuret https://doi.org/10.1016/0013-4686(80)87074-5
- Chem. Eng. Prog. Symp. Ser. v.51 Mass transfer at rotating cylinders M.Eienberg;C.W.Tobias;C.R.Wilke
- Chem. Eng. Sci. v.24 The Radial Transfer of Ma and Momentum in an Axial Fluid Stream betwen Coaxial Rotating Cylinders -Ⅰ Experimental Measurenment J.R.Flower;N.Macleod;A.P.Shahbenderian https://doi.org/10.1016/0009-2509(69)80057-6
- Chem. Eng. Sci. v.30 The radial transfer of mass to an axial stream of liquid betwen coaxial rotating cylinders N.Macleod;T.Rue https://doi.org/10.1016/0009-2509(75)80011-X
- Chem. Eng. J. v.27 Experimental and theoretical study of a rotating annular flow reactor S.Cohen;D.M.Marom https://doi.org/10.1016/0300-9467(83)80055-0
- Can. J. Chem. Eng. v.54 An Experimental Study of Ma Transfer in Rotating Couette Flow with Low Axial Reynolds number A.B.Strong;L.Carlucci https://doi.org/10.1002/cjce.5450540409