Abstract
In this paper, we proposed structure of a reversible discrete-time cellular neural network (DTCNN) for labeling digital images to protect copylight. First, we present the concept and the structure of reversible DTCNN, which can be used to generate 2D binary pseudo-random images sequences. We presented some, output examples of different kinds of reversible DTCNNs to show their complex behaviors. Then both the original image and the copyright label, which is often another binary image, are used to generate a binary random key image. The key image is then used to scramble the original image. Since the reversibility of a reversible DTCNN, the same reversible DTCNN can recover the copyright label from a labeled image. Due to the high speed of a DTCNN chip, our method can be used to label image sequences, e.g., video sequences, in real time. Computer simulation results are presented.
본 논문은 저작권보호를 위해 디지털영상의 라벨링을 위한 reversible DTCNN(discrete-time cellular neural network) 구조를 제안한다. 이러한 저작권보호 라벨링을 위해서 2차원 이진 pseudo 랜덤 영상열에 사용할 수 있는 새로운 reversible DTCNN의 구조와 개념을 설명하고 이에 대한 복잡행위를 보여주기 위해 reversible DTCNN의 서로 다른 방법들의 예시를 들어 설명한다. 또한 서로 다른 2진영상인 원영상과 복사된 영상은 서로 다른 2진 랜덤 영상키를 사용한다. 이 영상키는 원영상을 스크램블하는데 사용된다. 따라서 reversible DTCNN를 다시 역변환시켜서 저작권보호가 라벨링된 영상으로부터 복사된 영상임을 찾아낼 수 있다. 그러나 이러한 동영상을 처리하는 데는 S/W에서는 많은 시간이 소요되므로 고속 DTCNN 칩을 사용하여 실시간에서 동영상이나 비디오영상을 저작권보호를 위한 라벨링에 사용할 수 있으며, 이러한 결과를 컴퓨터에서 시뮬레이션됨을 보인다.