A Design of 16${\times}$16-bit Redundant Binary MAC Using 0.25 ${\mu}{\textrm}{m}$ CMOS Technology

  • Kim, Tae-Min (Dept.of Electronics Engineering, Kumoh National Institute of Technology) ;
  • Shin, Gun-Soon (Dept. of Information Communication, Kumi Collage)
  • 발행 : 2003.03.01

초록

In this paper, a 16${\times}$16-bit Multiplier and Accumulator (MAC) is designed using a Redundant Binary Adder (RBA) circuit so that it can make a fast addition of the Redundant Binary Partial Products (RB_PP's) by using Wallace-tree structure. Because a RBA adds two RB numbers, it acts as a 4-2 compressor, which reduces four inputs to two output signals. We propose a method to convert the Redundant Binary (RB) representation into the 2's complement binary representation. Instead of using the conventional full adders, a more efficient RB number to binary number converter can be designed with new conversion method.

키워드

참고문헌

  1. C. S. Wallace, 'A Suggestion for Fast Multiplier.' IEEETrans. Electron. Comput vol.EC-13,pp.14-17,Feb. 1964. https://doi.org/10.1109/PGEC.1964.263830
  2. Y. Harata, Y. Nakamura, H. natase, M. Takigawa, and N. Takagi, 'A high speed multiplier using a redundant binary adder tree,' IEEE J. Solid-state Circuits, vol. SSC-22, pp. 28-34, Feb. 1987. https://doi.org/10.1109/JSSC.1987.1052667
  3. H. Edamatsu, T. Taniguchi, T. Nishiyama, and S. Kuninobu, 'A 33 MFLOPS floating point processor using redundant binary representation,' Dig. Tech. Papers of 1988 ISSCC, pp. 152-153, Feb. 1988.
  4. M. Tonomura, 'High-speed digital circuit of discrete cosine transform,' SP97-41, DSP94-66, Tech. Rep. IEICE Japan, pp. 39-46, 1994.
  5. MAKINO et al, 'An 8.8-ns $54{\times}54-bit$ multiplier with high speed architecture' IEEE Journal of solid-state circuits. Vol. 31. No 6. June 1996.
  6. Sung-ming Y, Chi-sung L, Chin-hsing C, and Jau-yien L, 'An efficient redundant-binary number to binary number converter.' IEEE Journal of solid-state circuits. Vol. 27, No. 1, January 1992
  7. A. D. Booth: 'A Signed Binary Multiplication Technique,' Quart. J. Mech. Appl. Math., Vol. 4. Pt. 2, pp. 236-240, 1951. https://doi.org/10.1093/qjmam/4.2.236