DOI QR코드

DOI QR Code

Synthesis of Carbon Nanotubes and Nanofibers on a Substrate Coated with Metal Nitrates using an C2H4 Inverse Diffusion Flame

메탈나이트레이트가 도포된 기판과 C2H4 역확산화염을 이용한 탄소나노튜브 및 탄소나노섬유의 합성

  • 이교우 (한국과학기술연구원(KIST)) ;
  • 정종수 (한국과학기술연구원(KIST) 대기자원연구센터) ;
  • 황정호 (연세대학교 기계공학과)
  • Published : 2003.10.01

Abstract

Synthesis of carbon nanomaterials on a substrate coated with metal nitrates using an ethylene fueled inverse diffusion flame was illustrated. The effects of radial distance, residence time of the substrate, and hydrocarbon composition on the synthesis of carbon nanomaterials were investigated. The effects of catalyst metal particles were also studied using SUS304 substrates coated with Fe(NO$_3$)$_3$ (ferric nitrate, nonahydrate) and Ni(NO$_3$)$_2$(nickel nitrate, hexahydrate), and Cu substrate. Carbon nanomaterials, with diameters ranging from 30 - 70 nm, were observed on the substrate for both cases of using substrates only and using them with metal nitrates. In case of using the substrate with metal nitrates, the formation and growth of carbon nanomaterials were occurred in the lower temperature region than that of using the substrates only due to the easy activation of the metal particles coated on the surface of the substrates.

Keywords

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., 1985, '$C_{60}$:Buckminsterfullerence,' Nature, Vol. 318, p. 165 https://doi.org/10.1038/318165a0
  2. Iijima, S., 'Helical microtubules of graphite carbon,' Nature, Vol. 354, p. 56 https://doi.org/10.1038/354056a0
  3. Long, R. Q. and Yang, R. T., 2001, 'Carbon nanotubes as superior sorbent for dioxin removal,' J. Am. Chem. Soc., Vol. 123, p. 2058 https://doi.org/10.1021/ja003830l
  4. Lee, G. W., Jurng, J. and Hwang, J., 2003, 'Flame synthesis of carbon nanofibers using SUS304 substrates,' Trans. of the Korean Soc. of Combust., Vol. 8, NO. 1, in press
  5. Baker, R. T. K., and Harris, P. S., 1978, 'The formation of filamentous carbon,' Chem. Phys. Carbon, Vol. 14, pp. 83-165
  6. Amelinckx, S., Zhang, X. B., Bernaerts, D., Zhang, X. F., Ivanov, V., and Nagy, J. B., 1994, 'A formation of catallytically grown helix-shaped graphite nanotubes,' Science, Vol. 265, p. 635 https://doi.org/10.1126/science.265.5172.635
  7. Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., 1996, 'Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,' Chem. phys. Lett., Vol. 260, pp. 471-475 https://doi.org/10.1016/0009-2614(96)00862-7
  8. Ebbesen, T. W., and Ajayan, P. M., 1992, 'Large-scale synthesis of carbon nanotubes,' Nature, Vol. 385, p. 220 https://doi.org/10.1038/358220a0
  9. Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vaquez, J., and Beyers, R., 1993, 'Cobalt catalysed growth of carbon nanotubes with single - atomic - layer walls,' Nature, Vol. 363, p. 605 https://doi.org/10.1038/363605a0
  10. Iijima, S., Ichhashi, T. and Ando, Y., 1992, 'Pentagons, heptagons and negative curvature in graphite microtuble growth,' Phys. Rev. Lett., Vol. 69, pp. 3100-3103 https://doi.org/10.1103/PhysRevLett.69.3100
  11. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Cobert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., and Smalley, R. E., 1996, 'Crystalline ropes of metallic carbon nanotubes,' Science, Vol. 273, p. 483 https://doi.org/10.1126/science.273.5274.483
  12. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegel, M. P., and Provencio, P. N., 1998, 'Synthesis of large arrays of well-aligned carbon nanotubes on glass,' Science, Vol. 282, pp. 1105-1107 https://doi.org/10.1126/science.282.5391.1105
  13. Yuan, L., Saito, K., Pan, C., Williams, F. A. and Gordon, A. S., 2001, 'Nanotubes from methane flames,' Chem. Phys. Lett., Vol. 340, pp. 237-241 https://doi.org/10.1016/S0009-2614(01)00435-3
  14. Yuan, L., Saito, K., Hu, W. and Chen, Z., 2001, 'Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes,' Chem. Phys. Lett., Vol. 346, pp. 23-28 https://doi.org/10.1016/S0009-2614(01)00959-9
  15. Vander Wal, R. L., Ticich, T. M. and Curtis, V. E., 2000, 'Diffusion flame synthesis of single-walled carbon nanotubes,' Chem. Phys. Lett., Vol. 323, pp. 217-223 https://doi.org/10.1016/S0009-2614(00)00522-4
  16. Vander Wal, R. L. and Ticich, T. M., 2001, 'Comparative flame and furnace synthesis of single-walled carbon nanotubes,' Chem. Phys. Lett., Vol. 336, pp. 24-32 https://doi.org/10.1016/S0009-2614(01)00114-2
  17. Lee, G. W., Jurng, J., and Hwang, J., 2002, 'Soot concentration and temperature measurements in laminar ethylene jet double-concentric diffusion flames,' Trans. of the Korean Soc. of Mech. Engineers B, Vol. 26, Vo. 3, pp. 402-409 https://doi.org/10.3795/KSME-B.2002.26.3.402