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Aggregated Smoothing: Considering All Streams
Simultaneously for Transmission of Variable-Bit-Rate
Encoded Video Objects

Sooyong Kang and Heon Y. Yeom

Abstract: Transmission of continuous media streams has been a
challenging problem of multimedia service. Lots of works have
been done trying to figure out the best solution for this problem,
and some works presented the optimal solution for transmitting the
stored video using smoothing schemes applied to each individual
stream. But those smoothing schemes considered only one stream,
not the whole streams being serviced, to apply themselves, which
could only achieve local optimum not the global optimum. Most
of all, they did not exploit statistical multiplexing gain that can
be obtained before smoothing. In this paper, we propose a new
smoothing scheme that deals with not an individual stream but the
whole streams being serviced simultaneously to achieve the opti-
mal network bandwidth utilization and maximize the number of
streams that can be serviced simultaneously. We formally proved
that the proposed scheme not only provides deterministic QoS for
each client but also maximizes number of clients that can be ser-
viced simultaneously and hence achieves maximum utilization of
transmission bandwidth.

Index Terms: Variable bit rate, traffic smoothing, aggregated
smoothing, multimedia systems.

I. INTRODUCTION

The VBR(Variable Bit Rate) nature of the video data presents
a challenge in designing VOD systems since the disk bandwidth
as well as network bandwidth should be guaranteed as well as
maximizing the utilization. Smoothing of VBR streams is one
of the widely used techniques to enhance network bandwidth
utilization of the VOD(Video-On-Demand) system. Smoothing
is used to reduce the bit rate variability of the video streams. It
is performed by transmitting all or part of high bit rate frames in
advance to reduce the peak data rate of the stream, and allocat-
ing network bandwidth to the stream according to the reduced
peak data rate. Hence it is possible to achieve high bandwidth
utilization as well as providing deterministic service. Various
research have been conducted based on this approach [1]-[5].
And the performance of each scheme was evaluated in [6]. An-
other approach to enhance network bandwidth utilization is to
permit some level of QoS(Quality-of-Service) degradation by
giving up deterministic service guarantees. This approach ex-
ploits the indirect smoothing effect that comes out from the re-
duced per-stream bit rate variability when lots of VBR streams
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are multiplexed, and the effect is known as ‘Statistical Multi-
plexing Gain.’ Hence, the schemes based on this approach pre-
sented a probabilistic bound on the QoS degradation [?]-[10].
These schemes exploit the fact that the video services are less
error sensitive than data services and so the probablistic QoS
guarantee is sufficiently reasonable to consider. However, if the
service requires payment, like Pay-Per-View system, users may
expect deterministic QoS rather than probabilistic QoS. There
is also a scheme combining the two approaches [11]. After
reducing peak data rate through a proper prefetching scheme,
this approach multiplex those smoothed streams statistically to
raise network bandwidth utilization. However, to the best of
our knowledge, there has been no work on smoothing a set of
multiplexed streams on the whole. Two of the recent smooth-
ing schemes for a stored video are ‘optimal smoothing’ from
[3] and ‘on-off smoothing’ from [4]. Optimal smoothing mini-
mizes the variability of allocated bandwidth to a stream without
start delay, while on-off smoothing permits only two transmis-
sion state ‘on’ and ‘off’ with allocating a fixed bandwidth to
a stream. Hence, while the optimal smoothing requires some
level of variability to the bandwidth allocation after smooth-
ing, on-off smoothing enables a fixed bandwidth allocation to
a stream which makes it easy to provide a deterministic service
without wasting serious amount of network bandwidth. But as
the on-off smoothing engages start delay, the real playback is
delayed to prefetch necessary amount of data in advance. The
combined scheme in [11] is a simple statistical multiplexing of
optimally smoothed streams. As they described, the statistical
multiplexing gain that can be obtained by statistically multiplex-
ing optimally smoothed streams is the lower bound of the sta-
tistical multiplexing gain that can be obtained by multiplexing
the original streams. And it can be understood that the optimal
smoothing scheme removes a great portion of statistical multi-
plexing gain that can be obtained without the optimal smoothing
scheme. Similarly, on-off smoothing removes almost all of the
statistical multiplexing gain on behalf of deterministic service
guarantee. Therefore, we can roughly conclude that smoothing
of individual stream reduces statistical multiplexing gain, which
leaves room for performance enhancement when statistical mul-
tiplexing gain can be fully obtained while providing determin-
istic service. The problem of those smoothing schemes is that
they are based on ‘individual smoothing’ - smoothing each in-
dividual stream by itself without considering the other streams
transmitted with it. Hence it can not take into consideration
the interaction of bit rates of each stream transmitted simulta-
neously. Hence, in spite that an individual smoothing scheme
can be optimized like optimal smoothing, the optimized scheme
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can not be regarded as a globally optimized smoothing scheme
that maximizes the number of streams serviced simultaneously
with given resources.

In this paper, we propose a globally optimized smoothing
scheme, ‘Aggregated smoothing, which maximizes the num-
ber of active streams while providing deterministic service to
each clients. The proposed scheme minimizes the overall client
tuffer requirement through maintaining the original statistical
multiplexing gain. Aggregated smoothing scheme smoothes
all the multiplexed streams being transmitted together on the
whole.

The organization of the rest of this paper is as follows. In
section II, we investigate the detailed problem of individual
smoothing schemes using the optimal smoothing and the on-off
smoothing as examples. Section I describes the concept of ag-
gregated smoothing and in section IV we present an admission
control scheme that extracts the proper transmission schedule
of all clients. In addition, the deterministic service guarantee is
proved formally. Section V deals with the optimality of the ag-
gregated smooting scheme. Finally, the concluding remarks are
presented in section VI,

IL. INDIVIDUAL SMOOTHING

Individual smoothing schemes such as optimal smoothing[3]
and on-off smoothing[4] do not consider the characteristics of
other streams or clients being serviced at the same time. They
are applied to each individual stream considering only the frame

size of each unit time and client buffer size. It results that, for
optimal smoothing, an extra multiplexing scheme is required to
transmit optimally smoothed streams simultaneously, and for
on-off smoothing, since the inter-stream interaction is totally
excluded from the scheme the bandwidth utilization decreases
rapidly as client buffer size decreases. These problems origi-
nated from the fact that the two smoothing schemes smooth each
individual stream independently from others. These individual
smoothing can not exploit the advantage of statistical multiplex-
ing arising from the transmission of multiple streams simultane-
ously. Since they do not obtain the affirmative effect of varying
the assigned bandwidth according to the state of client buffer
and frame size of each stream, they can not achieve the global
optimum.

Decoding equipment of each client can have different sized
buffers. In an individual smoothing, each stream uses its band-
width allocated in terms of time exclusively, which disables op-
timizing overall buffer utilization. As a result, a new request
that can be serviced through a proper scheduling might be re-
jected by an admission control algorithm for individual smooth-
ing. Fig. 1 shows such an example. First, Fig. 1(a) shows the
shape of an original object. When two clients C; and C, with
buffer size 4 and 6, respectively, request the object at the same
time and the total available bandwidth is 4, one of the two re-
quests can not be accepted if the optimal smoothing is applied.
As we can see from Fig, 1(c), the optimal smoothing scheme
generates assigned bandwidth of 1.75, 1.75, 1.75, 1.75, 3, and 2
in each time for the client C; . For client C5, the optimal smooth-
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Fig. 2. Aggregated smoothing.

Table 1. Buffer requirements in case of Fig. 1(b).

time 1 2 3 4 5 6
C1 1 2 3 4 4 2
Ca 3 4 5 6

ing scheme generates constant bandwidth allocation with allo-
cated bandwidth 2. Hence, for the two clients, C; and C», the
total required bandwidth(5) exceeds the available bandwidth(4).
However, with proper allocation of bandwidth to each client,
both the requests can be accepted as can be seen in Fig. 1(b).
The buffer requirements for client C; and C5 in each time is
presented in Table 1. As we can see from the example, despite
that the individual smoothing can be optimal for a stream, it is
not optimal on the whole. Thus, to get to the global optimum, it
is needed to deal with all streams collectively.

M. AGGREGATED SMOOTHING

Since aggregated smoothing regards all the multiplexed
streams as one huge stream to smooth the variation of data rate,
it transmits data independently of the buffer-bandwidth rela-
tion[4] of each stream. What it does is that it is trying to vary the
bandwidth allocated to each stream dynamically according to
the clients’ state of their buffers. Since the total bandwidth avail-
able to all streams currently being serviced is fixed on the link(or
device) bandwidth, if the aggregate of bandwidth requirements
from each stream do not exceed the link bandwidth it does noth-
ing but transmit all the streams with their own data rates. On ac-
cepting a new stream by which the total required bandwidth ex-
ceeds link bandwidth, it is needed to determine when to prefetch
how much data from which stream(s). In this section, we present
an underlying principle of aggregated smoothing. Table 2 de-
fines important notations used in this article.

Fig. 2 shows an example of aggregated smoothing. As we can
see in the figure, each stream is transmitted with their own data
rate when the aggregate of frame sizes does not exceed the link
bandwidth and there is no data to be prefetched at the time. But
when the total required bandwidth exceeds the link bandwidth, it
is needed to prefetch surplus data in advance. Hence, smoothing
by prefetching is to be done at this time and it should determine
1) which stream(s) to be prefetched and 2) how much data of the
selected stream(s) to be prefetched.

Table 2. Notations.

t frame time
t the time that the last stream finishes
frame size of stream ¢ at time ¢

Pi(t) amount of data to be prefetched for stream ¢ at time ¢
P(3) total amount of data that should be prefetched at time ¢
B;(t) available buffer size of client 7 at time ¢

B; buffer size of client i

D;(¢) amount of data belonging to stream ¢ that should be
transmitted at time ¢
MPA;(t) | maximum prefetchable amount of client £ at time ¢
MPA(t) | total prefetchable amount at time ¢, (= 3, M PA;(t))

Tt the real transmission time of data that should be
transmitted at or before time ¢

© the amount of data already being prefetched currently
B server-side network bandwidth

Table 3. P(t) value in case of Fig. 2.

i |1 2 3 4 5 6 7
PHy|0 2 5 3 2 0 0

Table 4. Remaining buffer size of each client in case of Fig. 2.

t 1 2 3 4 5 6 7
streeml | 4 2 3 1 2 2 3
streem2 |4 3 1 2 1 1 3
streem3 {1 3 2 0 2 3 2

A. Determining Prefetch Amount

There are two important things that should be considered
when determining the prefetch amount. First, sufficient amount
of data should be prefetched to keep the timeliness of data trans-
mission for deterministic service guarantee. Second, minimal
amount of data should be prefetched not to enlarge the required
client buffer size by unnecessary prefetching. The former is re-
lated to the quality of service and the latter to the optimality
of the smoothing scheme. In this section we only consider the
former, and the latter will be dealt with in Section V. To provide
deterministic service guarantee, data belonging to the frame that
should be displayed at time ¢ must be actually transmitted on or
before ¢ assuming that there are no physical time delay concern-
ing transmission and decoding. Thus, if the total amount of data
that should be transmitted at time ¢ exceeds link capacity, the
surplus data should be prefetched before ¢. Two different cases
exist that the amount of data to be transmitted at time ¢ exceeds
the link bandwidth. First, the sum of frame sizes of each stream
at time ¢ exceeds the link bandwidth. Second, while the sum of
frame sizes of each stream does not exceed the link bandwidth,
the sum of the current sum and the data of future frames that
should be prefetched at the time exceeds the link bandiwdth.
Let Sp, S1,--+ , Sn—1 be the streams being serviced currently
and let f;(¢) be the frame size of S; at time ¢. Then the above
two cases can be generalized as Z;:Ol (1) + P(t) > B, where
P(t) is the total prefetch amount at time ¢. P(t) is determined
by the amount of data at time later than ¢ and to determine the
value, aggregated smoothing regards the whole stream as one
huge stream, S, and calculate prefetch amount at each time.
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Algorithm(Prefetch Amount Calculation)

fst)(= Z?:_Ol fi(¢)) : data amount of stream & at time ¢;
B : link bandwidth
surplus : amount of surplus data;
P(t)y=0forall 0 <t < t;
surplus = 0;
fort =t;t >0t =t —1){
if(fs(t) > B) {
surplus = surplus + fs(t) — B;
P(t — 1) = surplus;

else {
surplus = max{surplus — (B — fs(t)),0};
P(t — 1) = surplus;
}
}

Fig 3. Prefetch amount calculation algorithm.

Fig. 3 shows the algorithm calculating the total prefetch amount
at each time. The algorithm is executed at the admisson con-
trol time and the result can be used unchanged until another new
client is accepted and the algorithm generates new result to re-
place the old one. Table 3 shows the P(t) values for the case
shown in Fig. 2.

In this case, since the maximim prefetch amount is 5, there
is no way to provide deterministic service if the sum of client
buffer sizes is less than 5. To prevent this kind of QoS degrada-
tion, client buffer sizes at the admission control time need to be
considered.

B. Determining Streams to be Prefetched

To actually prefetch already determined amount of data(P(t)),
target streams to prefetch and the amount of data to be
prefetched in each stream are to be determined. Simple schemes
easy to think can be to select streams in order of their data rate at
the time and prefetch data in that order or to select all streams(n)
as target streams and prefetch P(t)/n data from each stream.
But these schemes can not utilize client buffer efficiently. The
former scheme can result in buffer overflow since it shows a bi-
ased selection of target streams. One example is presented in
Fig. 4. For the streams of which the frame size in each time
appears in (a), prefetching the highest data rate stream first gen-
erates the transmission schedule as (b). The scheme always se-
lects stream A as a target stream. In this case, as we can see
from (d), the maximum buffer requirement for prefetching of
stream A is 7 while the corresponding client has buffer sized
5, which results in client buffer overflow. But if prefetching is
done according to the transmission schedule in (c), determin-
istic service can be provided since buffer requirements for all
clients are less than or equal to 5(e). The latter scheme can also
result in client buffer overflow like in the case of the former
scheme because of the ignorance of client buffer size. That is,
assigning the same prefetch amount to all the clients regardless
of their buffer size can induce the buffer overflow for a client
with relatively small sized buffer while the buffer of a client
with relatively large sized buffer still remains partially unused.
An example of this phenomenon can also be found easily. The
reason why the above two simple schemes cause client buffer
overflows that are avoidable with a proper prefetch schedule is
that they do not consider the remaining buffer size of each client
at the prefetching time. Therefore, to solve this problem, re-
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T 1 0z 3 4 T 1 2z 3 4 ¢ 1 2 3 4
streemA 2 2 5 5 streamA 4 4 3 3 sireamA 2 4 3 5
streamB 1 1 1 2 steaemB 1 1 1 2 steamB 2 1 1 1
streemC 1 1 2 1 steamC 1 1 2 1 steamC 2 1 2 0
total 4 4 8 8 total 6 8 6 6 total 6 6 6 6
(a) () (c)
¢ 1 23 4 ¢ 12 3 4
stresemA 4 6 7 5 streamA 2 4 5 5
steamB 1 1 1 2 stresemB 2 2 2 2
steamC 1 1 2 1 steamC 2 2 3 1
fotal 6 8 10 8 total 6 8 10 8
@ (e

Fig. 4. Problem of prefetching highest rate first(B; = 5, for all 7): (a)
Original streams, (b) prefetching highest rate first, (c) possible solu-
tion, (d) buffer requirement for prefetching in case of (b), (e) buffer
requirements for prefetching in case of (c).

maining buffer size of each client should be considered at tar-
get stream selection time. Namely, avoid prefetching streams
of which client buffers have little space to store future data and
prefetch relatively large amount of data of a stream of which
client buffer has a lot of space unused, to prevent not inevitable
buffer overflows. Hence, a stream of which the unused client
buffer size is the largest should be the first target of prefetching
and the change of the buffer state should be reflected without
delay to the prefetch stream selection process. Table 4 presents
the remaining buffer size of each client in Fig. 2. All the clients
are assumed to have buffer sized 5. The right side of Fig. 2 is
actually the result of smoothing using the remaining buffer size
information appeared in table 4. In case that multiple streams
of which remaining buffer sizes are the same exist, any stream
among them can be selected as a target stream.

C. Transmission Schedule

Let 7(t) be a set of D;(t},4 = 0,1,--- ,n — 1L when there
are n streams being serviced. Transmisson schedule, 7 is a se-
quence of 7 (t)s in order of time ¢ from ¢t = 0 to t = ¢;. Admis-
sion coatrol algorithm generates transmission schedule when a
new request is accepted. According to the transmission schd-
ule the real transmission of data in each stream is done and the
transmission schedule guarantees deterministic service. The for-
mal proof of the deterministic service guarantee by the transmis-
sion schedule is presented in the next section. The transmission
schedule can be used unchanged until a new client is accepted
for service and a new transmission schedule is generated by the
admission control algorithm. Accepting a new client requires re-
placement of old transmission schedule with a newly generated
transmission schedule.

IV. ADMISSION CONTROL

In this section, we present an admission control algorithm and
prove that the algorithm guarantees deterministic service.
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A. Admission Control Algorithm

Two major considerations in admission control are that 1)all
the streams including the new stream should be transmit-
ted without any delay within the given link bandwidth and
2)prefetching for smoothing should not invoke client buffer
overflow to provide deterministic service. The admission con-
trol scheme presented in this section considers those two con-
siderations simultaneously. The algorithm calculates the total
prefetch amount that is needed for delayless transmission of
data and then tries to make a transmission schedule that pro-
vides deterministic service considering the prefetch amount. If
there is no such transmission schedule, the new request is re-
jected. As all the clients have limited amount of buffers, there
is an upper bound of data amount that can be stored in the
client buffer. Hence, distribution of total prefetch amount to
each client should be done taking client buffer size into con-
sideration and the admission control algorithm should trace the
maximum prefetchable amount of data of each client. If total
prefetch amount exceeds the sum of all the maximum prefetch-
able amount of each client, the new request should not be ac-
cepted to provide deterministic service to the existing clients.
Let M PA;(t) be the maximum prefetchable amount of client
C; at time t. Then M P A;(t) can be defined as follows.

MPA(t) = min{B; — fi(t), Pi(t + 1) + fi(t + 1)}

In the above formula, B; — f;(¢) means the remaining buffer size
and P;(t + 1) + f;(t + 1) means the amount of data of which
transmission deadline is ¢ + 1. Actually, the amount of data that
can be prefetched at time ¢ can exceed P;(t+1) + fi(t+1) since
data of which transmission deadline is larger than ¢ 4 1 also can
be prefetched as long as the total amount does not exceed the
buffer size. However, prefetching data of which transmission
deadline is larger than ¢ + 1 is meaningless because it is not
indispensable!. Additionally, it not only occupies client buffer
unnecessarily in advance but also increases bandwidth allocated
to the client at time t. Hence, we assume that even if P;(t +
1) + fi(t + 1) is less than B; — f;(t), more data than P;(t +
1) + fi(t + 1) will not be prefetched. As we can see from the
defining formula of M PA;(t), MPA,(t) depends on P;(t +
1), and P;(t + 1) depends on the scheme of distributing total
prefetch amount to clients.

To accept a new request, M PA(t) > P(t) should be satis-
fied for all ¢. While P(¢) can not be changed since it depends
only on link bandwidth($3) and frame size of each stream( f;(¢)),
M P A(t) can be varied by changing P;(t)s. Therefore, the exis-
tence of P;(t)s,i = 0,1,--- ,n—1 thatsatisfy M PA(t) > P(t)
for all time ¢ should be examined to determine the acceptance of
new request. In addition, letting ¢ = 0 be the time when a new
stream begins to be transmitted, P(0) + 22:01 £:(0) — B should
be less or equal than the total amount of data already prefetched
to each client(g) at the time since additional prefetching is not
possible at the time. Then we can formalize the definition of
admission control as follows.

Definition 1 (Admission Control) :
of prefetch amounts

Let P(t) be a set
for each client at time ¢, i.e.,
IData with transmission deadline ¢ does not mean that it belongs to the frame

that will be played at time ¢. If data belonging to the latter case is determined to
be prefetched at time ¢ — 2, its transmission deadline is regarded as ¢ — 2.

Po(t), Pi(t), -+,

P,_1(t) such that 2?2_01 P,(t) = P(t). And let P be a se-
quence, P(0),P(1), - ,P(t; — 1). Then, admission control
for a new client C,, is defined as testing the following two con-
straints.

e Existence of sequence P that satisfies, for 1 <¢ <1¢,

n—1

VP(t) of P, Zmin{Bi_fi(t)aPi(t)+fi(t)} > P(t-1).

i=0

e No additional data that should have been prefetched before
time 0, i.e.,

n—1
PO)+ > fi(0)-B<p.
=0

A P(t) that satisfies the inequality of the first constraint
in the above definition is called ‘proper P(¢)’. Calculating
prefetch amount, P(¢), of each time can be done with the al-
gorithm in the previous section, and the second constraint of
above definition can be examined easily using P(0). To ex-
amine the first constraint, we can simply test all the possible
P’s. However, as the number of all possible P’s is roughly
n+P0)-1CP0) Xnt+P(1)—-1CP) X ** Xt P(t,-1)-1 CP(t,-1)>
which is almost impossible to test on-line. Hence, instead of
searching for the P that satisfies the constraint by examining all
the cases, we generate P(t) that satisfies M PA(t) > P(t) in
reverse order from time ¢; — 1 to O to find P. Fig. 5 shows the
admission control algorithm that contains this process. The ad-
mission control algorithm can be partitioned into two parts. The
first part (the first while loop in the for loop) generates a P(¢)
that is ‘proper’ at time ¢. When the first part could not make a
proper P(t), the second part redistributes future prefetch amount
to make a proper P(¢). Hence, the second part of the algorithm
may change P(t+1), P(t+2),- -+, P(t;—1), keeping them still
proper. In the first part, the algorithm selects a stream that has
the largest remaining buffer size as a target stream for prefetch-
ing and prefetches one data unit. Changes to the remaining
buffer size caused by the prefetching is reflected immediately.
And the algorithm selects a target stream again until either all
the prefetch amount are distributed(P = 0) or there is no way
to distribute the prefetch amount without client buffer overflow
and delay(©® = () while keeping the past P(¢)s unchanged. The
reason all the prefetch amount can not be distributed to clients
is that M P A(t) is less than P(¢), and in this case, the algorithm
tries to increase M P A(t) by manipulating P;(t'),t’ > ¢t + 1(the
second part). Increasing M PA(t) equal to the prefetch amount
means that there is a sequence of P(¢)s from ¢; — 1 to the current
time that satisfies M PA(t) > P(t) for all ¢t from ¢; — 1 to the
current time. Kernel of the second part is the process of redis-
tributing total prefetch amount by bandwidth reallocation. For
the clients that have remaining buffer space but do not have data
to prefetch, MPA;(t) = P;(t + 1) + f;(¢t + 1) is satisfied. In
this case, by decreasing the futurebandwidth allocated to them,
which results in the increment of data to be prefetched at current
time, they increase P;(¢-+1)s and finally increase M P A,;(t). On
the contrary, for the clients that have data to prefetch but don’t
have remaining buffer, M PA;(t) = B; — fi(t) is satisfied.
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Algorithm(Admission Control)

C; : client ¢, R;(t) : remaining buffer size of client ¢ at time ¢
G1,Ga, O : group of clients
G1=G=0=0
Insert all clients into group O;
P;(t;) = 0 for all corresponding ’s
calculate P(t),t=0,1,2,--- ,t; — 1;
if(P(0) + 77 fi(0) — B > p) reject;
fort =t — L;t > 0;t=¢t—1){
P = P(t);
Ri(t) = B; — fi(t);
if(P > 7, Ri(1)) reject;
D;(t) = Oforall i’s;
Di(t+ 1)y = Pi(t + 1) + fi(t + 1) for all i’s;
while(P > 0 and O # 0) {
select C; that has the largest R;(¢) from group O;
if(D;(t + 1) > 0 and R;(t) > 0) {
Pz(t) = Pl(t) + 1; Di(t + 1) = Di(t + 1) —1; D-L(t) = Dz(t) +1;
Rz(t) = Rl(t) -1, P=P—-1,

else if(R; (¢) > 0)

{insert C; into group G1; delete C; from group O;}
else if(D;(t + 1) > 0)

{insert C; into group Go; delete C; from group O;}
else delete C; from group O;

}
if(P > 0) { /* not a proper P(t) */
t=t+1;
while(3~, fi(t') > Bor P(¥') > 0){
while(P > 0) {
select C; that has the largest D; (' + 1) from Gy ;
pick a client, C';, that has the largest P; (¢ + 1) from Ga;
if(Di(t/ + 1) > 0 and Pj(t +1)>0 {
Ds(#'+1) = D;(t' +1) + 1; D;(¢') = D;(¢') - 1;
Pi(t+1)=P;(t+1)—1;
Dt +1) = D;(t' +1) — 1; Pi(t) = P;(t) + 1;
Ri(t)=Ri(t)—-1;P=P—1;
if(R;(t) = 0) delete C; from group Gi;

}
else if(P; (t + 1) = 0) reject;
else if(D; (' + 1) = 0) break;

t=t+1;

if(P > 0) reject;
}
}

aceept;

Fig 5. Admission control algorithm.

In this case, by increasing the future bandwidth allocated to
them, which results in the decreasing of data to be prefetched
at current time, they decrease P;(t + 1)s as long as M PA;(t)s
are kept unchanged as B; — f;(t). The increment of P,(t + 1)s
of the former clients and the decreasing of P;(¢ + 1)s of the lat-
ter clients should be the same to keep the P(¢ + 1) unchanged.
The group of the former clients are denoted by G; and the group
of the latter clients are denoted by G5. There are four different
cases that a request is rejected. First, if the second constraint
of Definition 1 is not safisfied, the request is rejected. Second,
if the total prefetch amount at a time is larger than the sum of
remaining buffer sizes the request is rejected. The third case
is that if there is no way to reduce the prefetch amount of any
client in group G, when there still remains data that should be
distributed for prefetch to clients. This is the case that the sum
of frame sizes of clients in group Go at the time is larger than
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the sum of link bandwidth and their buffer sizes. Finally, if
the algorithm could not find any proper P(¢) until it reaches
a time when sum of frame sizes of all the clients does not ex-
ceed the link bandwidth and there is no data to prefetch, the
request is rejected since bandwidth reallocation at that time is
meaningless. At the time the admission control algorithm is
finished, P;{(t), i = 0,1,--- ,n—1, £t = 0,1,--- ,t; — 1
means the amount of data that should be prefetched to client
C; at time ¢t and D;(t) means the total amount of data that
should be transmitted to client C; at time ¢. Hence, transmission
schedule 7 is determined as a sequence 7 (0), 7 (1), -+ , 7 (¢;),
where 7 (t) = {Dq(t), D2(t), -, Dn—1(t)}. The theoretical
time complexity of the proposed admission control algorithm
is O(L? - Nlog N), where N is the number of streams cur-
rently being serviced and L is the length of stream(exactly i;,
assuming current time being 0). But as most of the rejection oc-
curs at the first and the second rejection points of the algorithm
and the outer while loop of the second part of the algorithm fin-
ishes within a few iteration generally, the actual time complexity
will be about O(LN log N). In the mean time, the transmission
schedule generated by the admission control algorithm removes
any other computation for smoothing at the real transmission
time. The data unit used in the aggregated smoothing scheme
including admission control algorithm is the network transmis-
sion unit such as cell in ATM network or packet in ethernet en-
vironment. (In the ethernet environment, the proposed scheme
can not completely remove the uncertainty of the network such
as packet delay or delay jitter.)

B. Deterministic Service Guarantee

Lemma 1 (Nonexistence of Buffer Overflow) :  Transmis-
sion schedule 7" generated by the admission control algorithm
does not cause buffer overflow at the real transmission time.

Proof: 1In the first part of the admission control algorithm,
P;(t) increases only if R;(¢) > 0. And in the second part of the
algorithm, a stream is deleted from group G; as soon as R;(t)
becomes 0. Hence, the prefetch amount of stream ¢ at time ¢,
P;(t) never exceeds B;. m]

Lemma 2 (In-time Transmission) : Transmission schedule
7T generated by the admission control algorithm does not per-
mit any delay of data.

Proof: We will show that 7, < t forall £(0 < ¢ < t;). At
time ¢;, the amount of data that should be transmitted is

D(t) = Y Dilt) = { % . ity fi(t) > B

otherwise
If D(tl) = Zi fi(tl)’ it is trivial that T < i If D(tl) =
B,Ttl < t when Tt,—1 < t; — 1.
At time ¢; — 1, the amount of data that should be transmitted is

D(tl — 1) = Zi Di(tl - 1)

_ B, > filti—-1)+Pt-1)>8
- Y. filti=1)+ P(t; — 1), otherwise

IED(t—1) =5, filti—1)+P(t;,—1), itis trivial that 7, _; <
t — 1. If D(tl — 1) = B, Tt —1 < t — 1 when Tt —2 < tl — 2.
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At the current time(0), the amount of data that should be trans-
mitted is

D(0) = ZD"“” = Z £i(0) + P(0) — p

Since the admission control algorithm guarantees P(0) +
>, fi(0) = B < p, D(0) < Bis satisfied. Hence, 79 = 0.
Therefore, 71 <1 =7 <2= =7, 1 <ti—1=mn <
tr.
Finally, 7, < ¢ for all ¢. O

Theorem 1 (Deterministic Service) Transmission schedule
T generated by the admission control algorithm guarantees de-
terministic service to all the clients serviced.

Proof: By Lemma 1 and 2, D;(t) guarantees no buffer

overflow and no data delay. Hence, deterministic service is guar-
anteed. a

V. OPTIMALITY OF AGGREGATED SMOOTHING

In this section, we prove that the proposed aggregated
smoothing scheme minimizes client buffer requirement and
maximizes the number of clients that can be serviced simulta-
neously with the given link bandwidth.

Lemma 3 (Indispensable Prefetching) : Aggregated smooth-
ing scheme prefetches future data when it is indispensable and
prefetches only indispensible amount of data.

Proof: (1. Time) Aggregated smoothing scheme
prefetches data at time ¢t — 1 if >, fi(t) + P(t) > B. If we
do not prefetch surplus data before time ¢, D(t) = >, D;(t) =
>, fi(t) + P(t) > B. Hence, 7, > t, which violates determin-
istic service constraint. Therefore, prefetching must be done at
or before time t — 1.

(2. Amount) Aggregated smoothing scheme prefetches exactly
>-; fi(£)+P(t)— B of data. If we prefetch less than that amount
of data, D(t) = 3, Di(t) > (5, £3(t) + P(£)) = (X, fi(t) +
P(ty — B) = B. Hence, 7, > t, which violates deterministic
service constraint. Therefore, at least >, fi(t) + P(t) — B of
data should be prefetched. O

Theorem 2 (Minimal Buffer Requirement) : Aggregated
smoothing scheme requires minimal amount of overall client
buffer.

Proof: Straightforward from Lemma 3. a

Theorem 3 (Maximizing Number of Streams) : Aggregated
smoothing scheme maximizes the number of clients serviced si-
multaneously for given resources.

Proof: Assume that a service request from client C), is re-
jected by the proposed admission control algorithm. It is enough
to prove that no other deterministic admission control algorithm
accepts the request.

Case 1: Rejected at the first rejection point in the algorithm

Suppose that C,, is accepted by any other admission control
algorithm. Since the proposed admission control algorithm
prefetches only indispensable amount of data, the total prefetch
amount at time 0 generated by the other algorithm, P’(0), is
no less than P(0). Hence, the amount of data that should be
transmitted at time O by the other algorithm, D’(0) = P'(0) +

> fi(0) —p > P(0) + >, fi(0) — p > B. Therefore, 79 > 0,
which implies that the other algorithm violates deterministic ser-
vice constraint. It means that the other admission control algo-
rithm is not a deterministic admission control algorithm.

Case 2: Rejected at the second rejection point in the algorithm
Similar to the Case 1. Since P'(¢) > P(¢) and P(t) >
> Ri(t), P'(t) > >, Ri(t). Hence, the other algorithm in-
vokes client buffer overflow which means that the algorithm
does not provide deterministic service.

Case 3: Rejected at the third rejection point in the algorithm

In this case, >, 5 fi(t +1) > >,z B: + B. Hence, no ad-
mission control algorithm can transmit ), f;(f 4- 1) of data
without delay.

Case 4: Rejected at the fourth rejection point in the algorithm
In this case, P(t') = 0 and 3.1, _, e filt) > (t+1—
t') X B+ ) ;cp Bi. Similarly to case 3, no admission control
algorithm can transmit 3.7, | 3=, fi(t+ 1) of data without
delay.

Hence, if a request is rejected by the proposed admission con-
trol algorithm, no other deterministic admission control algo-
rithm can accept it. Therefore aggregated smoothing algorithm
maximizes the number of streams serviced simultaneously. O

VI. CONCLUSION AND FUTURE WORKS

Previous works concerning smoothing of VBR streams fo-
cused on the smoothing of individual stream. Hence they did not
take into consideration the effect of multiplexing multiple VBR
streams. Multiplexing multiple VBR streams cuts down per
stream variability, which helps to increase link utilization and
number of clients serviced simultaneously. However smoothing
using statistical multiplexing gain does not provide determin-
istic guarantee. In this paper, we presented a new smoothing
scheme integrating per stream smoothing by prefetching and sta-
tistical multiplexing. The presented scheme not only provides
deterministic service to all the clients serviced but also maxi-
mizes link utilization. The scheme regards all the multiplexed
streams as one huge stream and deterministically smoothes the
stream considering each client’s buffer occupancy. We have
proved that the proposed scheme minimizes client buffer re-
quirement and maximizes the number of streams serviced si-
multaneously. This scheme can be used for VOD service not
only in the hierarchical ATM network environment but also in
the best-effort network such as ethernet. Currently, we are look-
ing for more simple admission control algorithm maintaining
optimality of the proposed algorithm.
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