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Scalability of a Mobile Agents based Network
Management Application

Marcelo G. Rubinstein, Otto Carlos M. B. Duarte, and Guy Pujolle

Abstract: This paper analyzes mobile agent performance in net-
work management compared to the client-server model used in the
Simple Network Management Protocol (SNMP). Prototypes of an
application that gathers MIB-II (Management Information Base-
II) variables have been created and tested on a LAN. After acquir-
ing implementation parameters related to network management
and to the mobile agent infrastructure, simulation results have
been obtained on large topologies similar in shape to the Internet.
Response time results show that mobile agents perform better than
SNMP when the number of managed elements ranges between two
specific limits, an inferior bound and a superior one, determined
by the number of messages that pass through a backbone and by
the mobile agent size which grows along with MIB-II variables col-
lected on network elements. The results also show that a significant
improvement is achieved when the mobile agent returns or sends
data to the management station after visiting a fixed number of
nodes.

Index Terms: Mobile agents, network management, performance
evaluation.

I. INTRODUCTION

Most network management systems are based on the client-
server centralized paradigm. Management implies access to a
large quantity of dynamic network information, which is col-
lected through periodic polling. This fine grained client-server
interaction generates an intense traffic that overloads the man-
agement station [1], resulting in serious scalability problems.

Some decentralization steps have already been taken. In event
notification, SNMP (Simple Network Management Protocol)
agents notify the management station upon the occurrence of
a few significant events. These agents use traps, i.e., messages
sent without an explicit request from the management station, to
decrease the intensive use of polling.

A more decentralized approach is adopted in SNMPv2
(SNMP version 2), in which there are multiple top-level man-
agement stations known as management servers. Each such
server is responsible for managing a set of agents. Neverthe-
less, it can delegate responsibility to some intermediate man-
ager. This manager, called a proxy agent, monitors and controls
agents under its responsibility. It also works as an informative
agent and is controllable by a higher-level management server.
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RMON (Remote MONitoring) uses network monitoring de-
vices called monitors or probes to perform proactive LAN mon-
itoring on local or remote segments. These probes provide in-
formation about links, connections between stations, traffic pat-
terns, and status of network nodes. They also detect failures,
misbehaviors, and identify complex events even when not in
contact with the management station.

These proposals seem to reduce traffic at the management sta-
tion. But, as the computational power of network nodes is in-
creasing, it is possible to delegate more complex management
functions to these nodes. Moreover, in order to satisfy the mul-
tiple requirements of today’s networks, novel network manage-
ment systems which can analyze data, decide, and take proac-
tive measures to maintain the Quality of Service (QoS) of the
network must be developed [2]. Mobile agents are a good alter-
native to satisfy these needs.

Network management could be distributed and made scalable
through mobile agent technology. These agents are programs
that help users by acting on their behalf in performing a number
of tasks in the network. These agents move to the place where
data are stored and get information the user needs. They help
saving bandwidth, time, and money. Mobile agents decentral-
ize processing and control. As a consequence, they reduce traf-
fic around the management station and makes asynchronous the
agent-manager interaction. This is very useful in the presence of
unreliable or lossy links. They also distribute processing load,
and increase flexibility by allowing the modification of the man-
agement agents’ behavior. Managers can also delegate authority
to mobile agents by decentralizing management functions such
as local data processing and filtering. In addition, several agents
may be used to manage a complex network. They can negotiate
the partitioning of the network to be managed and can avoid re-
dundant searches through exchanging information they already
have with other agents.

Research activities related to mobile agents in network man-
agement are recent [3], [4]. Several researchers investigate the
performance of network management based on mobile agents.
Geihs et al. [5], El-Darieby and Bieszcad [6], Outtgarts et al. [7],
and Picco [8] provide simple quantitative evaluation of mobile
agent and client-server approaches. Puliafito et al. [9], Baldi et
al. [1], and Liotta et al. [10] present a performance compari-
son based on more sophisticated mathematical models. These
models, however, do not consider parameters related to network
management and to the agents infrastructure, which are vital for
obtaining more reliable results pertaining to a real implemen-
tation. Bohoris et al. [11], Gavalas et al. [12], and Sahai and
Morin [13] perform measurements of mobile agent performance
but only on LANs of a few nodes. The problem of scalability of
network management based on mobile agents using real imple-
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Fig. 1. Network management by using a mobile agent.

mentation parameters on a complex Internet-like network with
a high number of nodes has not been exhaustively explored yet.

In this paper, we compare the scalability of network manage-
ment based on mobile agents against traditional SNMP based
management through the analysis of some simulation and im-
plementation results. Two application prototypes that gather
MIB-II (Management Information Base-II) variables have been
created and tested on a LAN. The first one is based on mobile
agents and the latter only uses SNMP. After acquiring parame-
ters related to network management and the mobile agent infras-
tructure, new results are obtained on large topologies similar in
shape to the Internet. Moreover, we also evaluate the effects
on network management performance of the MIB-II variable to
be gathered, of the transport protocol used to send the mobile
agent and SNMP data, and of returning or sending data to the
management station.

This paper is organized as follows. Section 1l presents the
implemented prototypes and measurement results. Section III
reports simulation results. Finally, concluding remarks and fu-
ture directions are presented in Section IV.

1. IMPLEMENTATION OF A MANAGEMENT
APPLICATION

Since SNMPv2 is not as widespread as SNMPv1, which does
not scale to large complex networks, we use two different so-
lutions for gathering MIB-II variables on managed elements: a
mobile agent-based solution and an SNMP based one.

The Mole infrastructure version 3.0 [14] is used in the mobile
agent implementation. Mole has been the first one to use Java
and has been chosen because it is free and open source. Mole
provides the functionality for the agents to move, communicate
with each other, and interact with the underlying computer sys-

tem. It uses TCP to transfer them. The agent’s data contain
global and instantiated variables. A weak migration scheme is
provided where only the state related to these data is transferred.
As a consequence, the programmer is responsible for encoding
program variables in the agent’s execution state. An execution
state includes local variables, parameters, and execution threads.

Both of the implemented prototypes use SNMP to gather
MIB-1I variables. The AdventNet SNMP library [15] and the
snmpd from package ucd-snmp [16] have been used. The Ad-
ventNet SNMP package contains APIs to help the implementa-
tion of solutions and products for network management. Version
2.2 of the AdventNet SNMPv1 has been used. The daecmon sn-
mpd, which comes with Linux Red Hat, is an SNMP agent that
responds to SNMP request packets. The package versions that
have been used on this experiment are the 3.5.3, for machines
running the Red Hat 5.2, and the 4.0.1 for the Red Hat 6.x.

The mobile agent implementation (Fig. 1) consists of one mo-
bile agent, a set of SNMP agents, and a set of translator agents.
The mobile agent migrates to all of the network elements that
need to be managed. The SNMP agents access the MIB-II vari-
ables. The translator agents convert the mobile agent requests
into SNMP requests!. There is exactly one SNMP agent and
one translator agent per network element. The mobile agent
migrates to a network element (arc 1 of Fig. 1) and communi-
cates by Remote Procedure Call (RPC) with the translator agent
(arc 2). This translator agent sends a request (GetRequest PDU
of SNMP) to the SNMP agent (arc 3) and obtains the response
(arc 4), which is sent to the mobile agent (arc 5). Then, the
mobile agent goes to the next element (arc 6) and restarts its
execution. After finishing the task of visiting all network ele-
ments that need to be managed, the mobile agent returns to the
management station (arc n).

In a simplified way, the total time of a mobile agent’s journey
across the network consists of the addition of the transfer time
on the network, of the time related to the infrastructure, and of
the time to run the application. For this application of gather-
ing MIB-II variables, the execution time per network element
is the addition of communication intervals between the mobile
agent and the translator agent, of the communication between
the translator agent and the SNMP agent, of the sending of the
GetRequest PDU, of the MIB access, of the receiving of the
GetResponse PDU, of the communication between the SNMP
agent and the translator agent, and of the communication be-
tween the translator agent and the mobile agent.

In the implementation that is only based on the SNMP, we
have used the traditional model of this protocol. The manager
sends an SNMP packet to an SNMP agent that responds to this
manager. Requests are sent to all of the elements to be managed
in a sequential manner, i.e., a new request is started after receiv-
ing the response from the previous one, until the last network
element receives a request and sends the response to the man-
ager. This manager has been implemented directly over the Java
Virtual Machine.

We have performed an experimental study in order to evaluate
the scalability of the two implementations.

UIn the Mole platform, mobile agents cannot access resources outside the
agent system.
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Fig. 2. Number of bytes related to the management station per number
of managed elements.

The topology used in this experiment consists of one man-
agement station (host A) and two managed network elements
(hosts B and C) interconnected through a 10 Mbps Ethernet
LAN. Host A is a Pentium MMX 233 MHz, with 128 Mbytes
of memory and Linux Red Hat 6.2. Hosts B and C are Pentium
I 350 MHz, respectively with 64 Mbytes and 128 Mbytes of
memory, running Linux Red Hat versions 6.1 and 5.2.

In order to evaluate the performance of the two prototypes for
a large number of managed elements, we alternately repeat the
two hosts B and C, e.g., if we want 5 elements to be managed,
we use an itinerary {B, C, B, C, B, and A}. This itinerary in-
formation is either in the mobile agent’s code or is passed to the
manager in the SNMP case.

The considered performance parameters are the number of
bytes related to the management station and the response time
in retrieving the MIB-II variable iffnErrors from the managed
elements. This variable denotes the number of received packets
discarded because of errors.

The JDK (Java Development Kir) 1.1.7 version 3 has been
used. In order to limit network performance variations that may
cause SNMP packet retransmissions which would alter response
time results especially in a loaded network, measurements have
been performed on a low loaded network. Both implementa-
tions have been tested in the same conditions and using the same
itinerary. We have made all the tests with the mobile agent plat-
forms running continuously. The number of managed network
elements has been varied from 1 to 250. For each measured pa-
rameter, 10 samples have been observed and we have calculated
a 99% confidence interval for the mean. If not specified, these
intervals are represented in the figures by vertical bars.

The mobile agent carries with itself the name of the variable
to be collected, the itinerary, and the already gathered responses.
SNMP sends a GetRequest PDU and receives a GetResponse
PDU.

The effect of the number of managed elements on the num-
ber of bytes related to the management station and on response
times has been analyzed. In all figures, we present the obtained
mean values.

We are interested in those cases where the management sta-
tion is attached to bottleneck links and, as a consequence, the
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Fig. 3. Response time per number of managed elements.

traffic that is being sent or received by the management station
may overload links and cause losses. Thus, in Fig. 2 we show
traffic associated to the management station. It represents the
total number of bytes used by the SNMP protocol and the initial
and final sizes of the mobile agent plus control messages gener-
ated by the Mole platform. We can observe that for few managed
elements, SNMP uses fewer bytes than the mobile agent to per-
form the task (Fig. 2). Nevertheless, as the number of managed
elements increases, the total traffic due to several retrievals of
GetRequest PDUs exceeds the overhead related to the variable’s
name, to the itinerary, to the already gathered responses, and
to Mole messages. The management station traffic due to the
mobile agent utilization becomes less important than SNMP’s
traffic, as we can conclude by extrapolating the analysis.

According to measurements performed with the tcpdump pro-
gram, the initial size of the mobile agent is approximately
1.5 kbytes. It is also worthy to note that since we have not
identified individual samples for the number of bytes, we do not
present confidence intervals.

As the required management time is approximately the same
for any network elements, SNMP response time grows propor-
tionally with the number of managed elements (Fig. 3). This rule
does not extend for the mobile agent. In fact, in the topology
used on this experiment, its response time increases more pro-
portionally with the number of managed elements as the agent
keeps swelling with more variables being collected on each new
network element. Hence, SNMP performs much better than the
mobile agent in this topology.

We have also measured the MIBs’ access times (times to
send/receive GetRequest/GetResponse PDUs) and these access
times added to communication times between the mobile agent
and translator agents (Fig. 4).

For SNMP and 250 managed elements, 99.6% of the total
time is spent on accesses to SNMP MIBs. For the mobile agent
and 250 managed elements things work differently as MIB ac-
cesses and RPCs take just 52.8% of the total time for the same
number of managed elements. For SNMP, accesses to MIBs
grow proportionally with the number of managed elements and
spend 65 ms per element. These MIB accesses added to RPCs
related to the mobile agent and translator agents communica-
tions also grow linearly and spend approximately 78 ms per el-
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ement.

The mobile agent remaining time is calculated by the differ-
ence between the response time for the mobile agent and the
time for accessing MIBs and that of RPCs. This measured re-
maining time is presented in Fig. 5. Since for this experiment,
the agent transmission time is comparably very small in front
of the other times that constitute the total response time, the
remaining time corresponds to the infrastructure related times,
e.g., serialization/deserialization, threads creation, and internal
messages transmission. As in Fig. 5, the mobile agent remaining
time grows exponentially with the number of managed elements,
we have used the measured points to obtain an approximation of
this curve as y = a®, where ¢ = 1.01176 (the approximation
curve is also presented in Fig. 5). This approximation has been
chosen to permit simple usage in simulations assessed for more
general topologies (Section III).

Mole is a general-purpose infrastructure which is used over
the Java Virtual Machine. As such, it may show big processing
times for executing Java codes compared to the direct execution
over the Java Virtual Machine. In order to verify this platform
overhead, even though an agent platform is needless for SNMP,
an SWMP manager has also been implemented over the Mole
infrastructure (as a stationary agent). According to Fig. 6, the
response time increases by approximately 86.9% for 250 man-
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Fig. 6. Response time for SNMP and SNMP over Mole.

aged elements when SNMP is used over Mole. Therefore, the
Mole platform has a great influence on the response time. For
SNMP over Mole, measurements related to 200 managed ele-
ments presented a great confidence interval due to variations in
either network performance or computer loads. Thus, a specific
mobile agent platform with fewer facilities than the Mole plat-
form may further improve the efficiency gain due to the mobile
agent approach.

These measurements have considered the most disadvanta-
geous case for the mobile agent since, in Ethernet, message
transmission times are negligible compared with processing
times. Measurements have been performed to verify this fact
and to obtain parameters closer to the real ones. These will be
used in simulations with topologies that are larger and closer to
the ones found in the Internet.

ITII. PERFORMANCE ANALYSIS BY SIMULATION

The applicability of mobile agents technology in carrying out
network management tasks is also assessed by simulation.

Network Simulator (NS) [17] is used in these simulations. We
have used the functionalities of Ethernet with topologies similar
in shape to the Internet and the UDP and TCP protocols. We
have written SNMP and mobile agent modules and some UDP
and TCP modules have had to be modified in order to allow the
transmission of the mobile agents.

NS works with packets sent through a network and usually
does not take into account the processing time of the application
layer on each end-node. For this reason, some parameters re-
lated to network management have been added to the simulation
model. These parameters depend on the agent infrastructure,
on the operational system, and on computer load. But their use
makes simulation results more reliable to a real implementation.
Table 1 contains the parameters used in the simulations.

The simulation model assumes that links and nodes have no
load and that links are error-free. The Maximum Segmentation
Size (MSS) used in the simulations is 1500 bytes. Therefore,
there is no fragmentation of SNMP messages since they are al-
ready small. For the mobile agent, the initial size is 1500 bytes.
After visiting the first element, its size becomes greater than
the MSS so it will be fragmented and sent in different packets,
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Table 1. Parameters used in the simulations.

Parameter Value
Initial size of the agent 1500 bytes
Request size for iflnErrors 42 bytes
Response size for iflnErrors 51 bytes
MIB access time per node for the agent 78 ms
MIB access time per node for the SNMP 65 ms
Related to the agent remaining time 1.01176

which incurs performance reductions. Every variable request is
sent on a different message. In all simulations, the mobile agent
follows a predetermined itinerary. If it is not specified, the mo-
bile agent uses TCP-Reno as the transport protocol because of
its widespread use in the Internet. The UDP protocol is used in
SNMP simulations. Concerning TCP, the slow-start mechanism
is used and the receiver window size is 20, but 30 kbytes are not
sent at one time in any of the simulations.

Two kinds of topologies have been used in the simulations.
The first one consists of elements in a 10 Mbps Ethernet LAN,
with 250 nodes and a latency of 10 us. The second one is simi-
lar in shape to the Internet. This topology is called transit-stub,
because each routing domain in the Internet can be classified as
either a stub domain or a transit domain. A domain is a stub do-
main if the path connecting any two nodes v and v goes through
that domain and only if either of « or v is in that domain [18].
Transit domains do not have this restriction. The purpose of
transit domains is to interconnect stub domains efficiently. A
transit domain comprises a set of backbone nodes, which are
typically fairly well connected to each other. In a transit do-
main, each backbone node also connects to a number of stub
domains, via gateway nodes in the stubs.

These transit-stub topologies may be used, for example, in
the network management of a matrix-branch organization on
which a matrix wants to manage the different geographically
spread branches. The management strategy used in this experi-
ment for transit-stub topologies considers that the management
station belongs to a node of a stub domain and managed net-
work elements are located in other stub domains (Fig. 7). In the
matrix-branch case, the management station of the matrix man-
ages the branch routers. Each branch is represented by a stub
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Fig. 8. Response time in implementation and simulation studies.

and contains some routers.

The considered performance parameters are the bandwidth
consumption on the management station links and the response
time in retrieving the MIB-II variable iflnErrors. We have used
the LAN topology in order to compare the simulation mode] to
the implementation results of Section IIL.

Fig. § presents the mobile agent and SNMP response times
for both of the implementation and simulation studies. We can
say that the simulated models reproduce the behavior of the im-
plementations. There is a slight difference in the response time
for the mobile agent due to the approximation of the remaining
time which has been used in the simulations (Section 1I).

Mobile agent performance is also evaluated in Internet like
topologies in which latencies are much greater than those of
LANs. Three different transit-stub topologies created by the
topology generator GT-ITM [18] are used. The topologies have
272 nodes and the links of these topologies have a 2 Mbps band-
width and a latency of a few milliseconds. The management
station controls groups of 16 network elements, which is the
number of nodes of a stub domain. Management is performed
in a predetermined way. First, all elements of a stub are ac-
cessed. Then, the next stub is managed until all the 16 stubs
are accessed. If not specified, figures present the mean response
time or bandwidth consumption for the three topologies.

The response time for SNMP and the mobile agent is ana-
lyzed for all of the three different topologies (Fig. 9). The re-
sults of the three topologies and a curve linking the mean values
are plotted. Fig. 9 shows that the mobile agent’s behavior does
not change with the topology (the three points coincide). But
for SNMP, there is a slight difference in the response time for
the three topologies. This variation is due to the great number of
SNMP packets that traverse the backbone (transit) links and to
the configuration of the backbone nodes that changes with the
topology. Fig. 9 also presents mean response times per num-
ber of managed elements. For a few set of managed elements,
SNMP performs better than the mobile agent because SNMP
messages are smaller than the initial size of the mobile agent.
As the number of managed elements increases, SNMP resporise
time grows proportionally since the time to manage a stub is ap-
proximately the same for all the stubs. For the mobile agent,
the response time increases faster when the number of managed
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Fig. 10. Response time for different variables.

clements grows due to the incremental size of the mobile agent.
By extrapolating the analysis, we can conclude that the mobile
agent performs better than SNMP when the number of managed
network elements ranges between two limits, an inferior bound
and a superior one. The number of messages that pass through a
backbone and the size of the mobile agent increasing with net-
work elements collected variables determine these limits.

An analysis related to mobile agent and SNMP’s behavior in
obtaining different variables is also performed. Three variables
are used: variable v is the same variable already used, and vari-
ables v and v3 are sysORDescr.3 and sysORDescr.5. All vari-
ables have a request size of 42 bytes and the response sizes are
of 51, 87, and 128 bytes. In Fig. 10 and for SNMP, the obtained
variable does not have a great influence because the number of
bytes exchanged between the management station and the man-
aged elements is small. For the mobile agent, the response time
increases as the number of exchanged bytes raises (e.g., from
variable v; to variable vg). In this experiment, when the number
of managed elements is 240, the response time for the mobile
zgent increases by 25.2%, obtaining variable vs instead of v;.

‘The Mole platform uses the reliable connection-oriented TCP
protocol, while SNMP uses the connectionless UDP protocol. In
order to verify the influence of the transport protocol to transfer
the data (not considering the connection phase of the TCP pro-
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tocol which is not provided by the NS simulator), we have per-
formed simulations with the mobile agent over UDP and SNMP
over TCP-Reno. In this experiment and for SNMP, the protocol
does not have a great influence on the response time. But for
the mobile agent, this time decreases significantly when UDP is
used (Fig. 11). This is due to the ACK transmission and mainly
to TCP congestion control, i.e., the slow-start mechanism. Be-
cause of the use of this mechanism, the segmented packets of the
mobile agent are not sent at one time which directly increases
the response time. This mechanism does not influence SNMP
because of the its small packet size which is never greater than
congestion or receiver’s windows sizes.

It has been shown that the mobile agent size increases with the
number of visited nodes. As a consequence, migration becomes
difficult. We also evaluate the performance gain of a strategy
in which the mobile agent returns to the management station to
reduce its size. This experiment considers that in one “trip” the
mobile agent visits a fixed number of nodes. Then, it returns to
the management station to “unload” collected data finishing this
trip. After that, the agent restarts the task of gathering variables
on the remaining nodes. The considered variables are the three
already presented, but now we aim at retrieving variables from
all of the 240 managed elements. The number of visited nodes
per trip varies from 1 to 240.

Fig. 12 shows that for a few managed elements per trip, the
response time decreases sharply when the number of managed
elements per trip increases. This is because in one trip the agent
visits few nodes and returns to the management station passing
through the backbone links. As the number of visited nodes
per trip increases, the response time keeps on decreasing until
a specific point. Then, it starts to increase due to the agent mi-
gration difficulty related to the agent size. The curve presents
a sawtooth format because when the number of elements to be
visited in a trip is not a multiple of the number of elements of a
stub (16 in this experiment), the mobile agent traverses several
stubs during a trip. Consequently, it passes more times through
the transit nodes and hence increases the response time. The
“optimum point” for this experiment varies with the size of the
mobile agent and consequently with the variable to be obtained.
For example, for variable vy, visiting 48 nodes and returning to
the management station provides the best result. Response time
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decreases by 27%, 32%, and 39%, for variables vy, vy, and vs,
when comparing with obtaining all 240 variables in one trip, i.e.,
the traditional mobile agent use.

For bandwidth consumption on the management station links,
it decreases when the number of managed elements per trip in-
creases, as in Fig. 13. This is because the number of transmitted
and received bytes by this station is larger when there are more
mobile agent returns to the management station.

The strategy of sending the results to the management station
instead of returning to this station is also analyzed. In Fig. 14,
we can see the same sawtooth effect. The response time de-
creases by 31%, 38%, and, 42%, for variables vy, vo, and vs,
comparing each optimum point with obtaining the 240 variables
in one trip.

In Fig. 15, we see that the strategy of sending data performs
better than the one of returning to the management station when
the number of per trip managed elements is small, since the mo-
bile agent’s code is not sent to the management station and the
mobile agent only returns to the management station after fin-
ishing its task. As this number of elements per trip increases,
both approaches behave almost the same because the size of the
agent gathered data is much greater than the size of the mobile
agent’s code and because of the smaller number of returns to the
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management station.

Fig. 16 shows that for a few per trip managed elements,
the bandwidth consumption on the management station links
decreases sharply when the number of managed elements in-
creases, because in one trip the agent visits a small number of
nodes and sends data to the management station. In this first
time, the number of acknowledgments sent to the management
station decreases when the number of per trip managed elements
increases. As the number of per trip visited nodes raises, band-
width utilization continues to decrease until reaching a point
where it tends to a specific value. This because of the enlarg-
ing agent size, which generates more fragmentation and hence
much more acknowledgments.

IV. CONCLUSION

We have compared two prototype implementations for gath-
ering MIB-II (Management Information Base - II) variables
on managed elements: A mobile agent-based one and an only
SNMP based one. Parameters obtained from the implemented
prototypes have been used in simulations on large Internet-like
topologies. Both of the implemented prototypes have used the
SNMP protocol (the AdventNet SNMP library and the ucd-
snmp package) to gather MIB-II variables and have been tested
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on an Ethernet LAN.

Results show that SNMP uses a larger number of management
station related bytes when the number of managed elements ex-
ceeds a value related to the overhead of several retrievals of
GetRequest PDUs and that the mobile agents require a higher
processing capacity. The mobile agent infrastructure turns the
execution of Java code slower. We have compared SNMP re-
sponse time directly over the Java Virtual Machine with one
for the SNMP over the Mole infrastructure. The response time
increases by approximately 86.9% for 250 managed elements
when SNMP is used over Mole. The topology used for the mea-
surements is adverse to the mobile agent, since the great avail-
ability of bandwidth on the Ethernet turns negligible the mes-
sage transmission times compared with processing times. For
this topology, the mobile agent becomes very sensitive to the
processing capacity of the machines. We have conducted some
experiments substituting the managed hosts by a Pentiom MMX
233 MHz, with 64 Mbytes of memory and Linux Red Hat ver-
sion 5.2, and by a Pentium 133 MHz with 32 Mbytes of mem-
ory and Linux Red Hat version 6.1. These experiments have
shown that there was no performance degradation when using
SNMP but the response time has grown up to 89.5% for the mo-
bile agent compared with the results with the higher processing
capacity of the machines. For this topology, SNMP performs
better than the mobile agent.

Simulations of the two implementations have also been per-
formed to obtain results for large Internet-like topologies. For
transit-stub topologies, the response time experiences a signif-
icant decrease when UDP is used since TCP slow-start mech-
anism does not send all of the mobile agent related packets at
once.

The mobile agent outperforms SNMP when the number of
managed elements ranges between two limits, an inferior bound
and a superior one, determined by the number of messages that
pass through the backbone links and by the mobile agent size
that grows with the variables collected on network elements.
Moreover, better management performance is experienced when
the mobile agent returns to the management station after visit-
ing a fixed number of nodes, since this allows the mobile agent
size to be limited. The response time decreases down to 39%
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for the variables that have been used. Better results are obtained
when the agent only sends data to the management station. In
this case, the improvement is up to 42%.

We conclude that the mobile agent paradigm significantly im-
proves network management performance when subnetworks
are managed remotely, especially if the links between the man-
agement station and the elements to be managed are of high-cost
(have a small bandwidth and a large latency).

This work opens the road for some future novel research di-
rections. In order to improve the mobile agent performance,
a direct MIB access could be implemented. This helps fusing
the SNMP and translator agents into one. Other mobile agent
platforms could also be tested. The use of intelligence over the
mobile agents to perform a reactive management with task dele-
gation and verification of when certain thresholds are exceeded
could equally be studied. SNMPv2 could be compared to mo-
bile agents for transit-stub topologies. Proxy managers would be
used on a node of a stub in order to avoid large latencies between
the manager and the agents for SNMPv1. Other approaches
that can face the latency problem are the multi-threaded ver-
sion of the SNMP manager and the multi-agent solution. The
response time can be improved by employing simultaneous re-
quests that are sent in the multi-threaded SNMP approach as
well as through the use of multiple agents which can manage
several stubs at the same time in the multi-agent solution.
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