DOI QR코드

DOI QR Code

Transition of Femtosecond Laser Ablation Mechanism for Sodalime Glass Caused by Photoinduced Defects

  • Jeoung, Sae-Chae (Laser Metrology Laboratory, Korean Research Institute of Standards and Science) ;
  • Choi, Jun-Rye (Laser Metrology Laboratory, Korean Research Institute of Standards and Science) ;
  • Park, Myung-Il (Laser Metrology Laboratory, Korean Research Institute of Standards and Science) ;
  • Park, Mi-Ra (Laser Metrology Laboratory, Korean Research Institute of Standards and Science) ;
  • Choi, Dae-Sik (Laser Metrology Laboratory, Korean Research Institute of Standards and Science)
  • 투고 : 2003.06.27
  • 발행 : 2003.09.01

초록

Femtosecond laser ablation mechanism was systematically investigated on sodalime glass in ambient conditions. The ablation crater diameter was measured for varying numbers of laser pulses as for varying well as the laser fluence. The analysis of the results with a one dimensional spatial Gaussian fluence distribution reveals that the inherent ablation mechanism has been altered from a multi-photon process to a single photon excitation due to defect sites that have been accumulated by successive laser pulses. Furthermore, the transition between the two regimes was found to be a function of both the laser fluence and the number of laser shots.

키워드

참고문헌

  1. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond Laser at 800 nm,” Optics Comm., vol. 114, pp. 106-110, 1995. https://doi.org/10.1016/0030-4018(94)00585-I
  2. T. Juhasz, R. Kurtz, C .Horvath, C. Suarez, F. Raks, and G. Spooner, “Photonic device fabrication with femtosecond laser oscillators,” Optics & Photonics News, vol. 24, pp. 55-49, 2002.
  3. K. Minoshima, A.M. Kowalwviz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, “Photonic device fabrication with femtosecond laser oscillators,” Optics & Photonics News, vol. 14, pp. 44-49, 2003. https://doi.org/10.1364/OPN.14.5.000044
  4. F. Korte, J. Serbin, J. Kochi, A. Egbert, C. Fallnich, A. Ostendorf, and B.N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A, vol.77, pp. 229-235, 2003. https://doi.org/10.1007/s00339-003-2110-z
  5. R. Haight, D. Hayden, P. Longo, T. Neary, and A. Wagner, “Implementation and performance of a femtosecond laser mask repair system in manufacturing,” Pro. SPIE, issue. 3546, pp. 477-484, 1998. https://doi.org/10.1117/12.332872
  6. Y. Shani, I. Melnick, S. Yoffe, Y. Sharon, K. Liebermann, and H. Terkel, “High-resolution near-field mask repair with femtosecond laser,” Pro. SPIE, issue. 3546, pp. 112-120, 1998. https://doi.org/10.1117/12.332815
  7. J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci., vol. 197-198, pp. 737-740, 2002. https://doi.org/10.1016/S0169-4332(02)00402-6
  8. B. N. Chickkov, C. Momman, S. Nolte, F. Von Alvenslebe, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A, vol. 63, pp. 109-115, 1996. https://doi.org/10.1007/BF01567637
  9. D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bugakova, and E. E. B. Campbell, “Fundamentals and advantages of ultrafast microstructuring of transparent materials,” Appl. Phys. A, vol. 77, pp. 223-228, 2003 https://doi.org/10.1007/s00339-003-2143-3
  10. K. Venkatakrishinan, B. Tan, and N. R. Sivakumar, “Sub-micron ablation of metalic thin film by femtosecond pulse laser, ” Optics & Laser Technol., vol. 34, pp. 575-578, 2002. https://doi.org/10.1016/S0030-3992(02)00074-9
  11. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron, vol. 33, pp. 1706-1716, 1997. https://doi.org/10.1109/3.631270
  12. Y. Hirayama and M. Obara, “Heat effects of metals ablated with femtosecond laser pulses,” Appl. Surf. Sci., vol. 197-198, pp. 741-745, 2002. https://doi.org/10.1016/S0169-4332(02)00403-8
  13. D. Y. Tzou, J. K. Chen, and J. E. Beraun, “Hotelectron blast induced by ultrashort-pulsed lasers in layered media,” Int. J. Heat and Mass Trans., vol. 45, pp. 3369-3382, 2002. https://doi.org/10.1016/S0017-9310(02)00053-4
  14. A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser apertureless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett., vol. 82, pp. 1146-1148, 2003. https://doi.org/10.1063/1.1555693
  15. R. A. House II and A. H. Guenther, Laser Induced Damage in Optical Materials (NBS Spec. Pub., 1976), pp. 338-340.
  16. M. Li, M. Ishizuka, X. Liu, Y. Sugimoto, N. Ikeda, and K. Asakawa, “Nanostructuring in submicronlevel waveguides with femtosecond laser pulses,” Opt. Comm., vol. 212, pp. 159-163, 2002. https://doi.org/10.1016/S0030-4018(02)01956-9
  17. W. Koshinski, A. Schirmacher, and E. Sutter, “Induced transmittance of eye-protective laser filters,” J. Laser Appl., vol. 10, pp. 126-130, 1998. https://doi.org/10.2351/1.521838
  18. J. Kruger, M. Lenzner, S.Martin, M. Lenner, C. Spielmann, A. Fiedler, and W. Kautek, “Single-and multipulse femtosecond laser ablation of optical filter materials,” Appl. Surf. Sci., vol. 208-209, pp. 233-237, 2003. https://doi.org/10.1016/S0169-4332(02)01389-2
  19. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B, vol. 14, pp. 2716-2722, 1997. https://doi.org/10.1364/JOSAB.14.002716
  20. S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A, vol. 69, pp. S99-S107, 1999. https://doi.org/10.1007/s003390051362
  21. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett., vol. 80, pp. 353-355, 2002. https://doi.org/10.1063/1.1432747
  22. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ablation of solids by femtosecond laser: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas, vol. 9, pp. 949-957, 2002. https://doi.org/10.1063/1.1447555
  23. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of $Al_2O_3$,” Phys. Rev. B, vol. 62, pp. 13167-13173, 2001. https://doi.org/10.1103/PhysRevB.62.13167
  24. S. Preuss, A. Demchuk, and M. Stuke, “Subpicosecond UV laser ablation of metals,” Appl. Phys. A, vol. 61, pp. 33-37, 1995. https://doi.org/10.1007/BF01538207
  25. J. Kruger and W. Kautek, “In Laser-Induced Thin Film Processing,” J. J. Dubowski, Ed. Proc. SPIE, vol. 2403, pp. 436-439, 1995. https://doi.org/10.1117/12.206276
  26. S. Kim, D. W. Chang, S. Y. Park, S. C. Jeoung, and D. Kim, “Excited-state intramolecular proton transfer and stimulated emission from phototautomerizable polyquinoline film,” Macromolecules, vol. 35 pp. 6064-6066, 2002. https://doi.org/10.1021/ma020319z
  27. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett., vol. 80, pp. 4076-4079, 1998. https://doi.org/10.1103/PhysRevLett.80.4076
  28. W. Kautek and J. Kruger, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett., vol. 69, pp. 3146-3148, 1996. https://doi.org/10.1063/1.116810
  29. P. Rudolph, J. Bonse, J. Kruger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A, vol. 69, pp. S763-S766, 1999. https://doi.org/10.1007/s003390051524

피인용 문헌

  1. XRD studies on the femtosecond laser ablated single-crystal germanium in air vol.43, pp.12, 2005, https://doi.org/10.1016/j.optlaseng.2004.12.010
  2. Formation of Tm2+ ions in germanosilicate glass optical fibers vol.351, pp.27-29, 2005, https://doi.org/10.1016/j.jnoncrysol.2005.05.021
  3. Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application vol.44, pp.2, 2006, https://doi.org/10.1016/j.optlaseng.2005.03.009
  4. Effect of two-photon spatial bunching on single photon detection rates vol.14, pp.6, 2003, https://doi.org/10.3807/KJOP.2003.14.6.573
  5. Formation mechanism of nanostructures in soda–lime glass using femtosecond laser vol.357, pp.3, 2011, https://doi.org/10.1016/j.jnoncrysol.2010.11.006