DOI QR코드

DOI QR Code

High-power Femtosecond Ti:sapphire Laser at 1 KHz with a Long-cavity Femtosecond Oscillator

  • Sung, Jae-Hee (Dept. of Physics and Coherent X-ray Research Center, Korea Advanced Institute of Science and Technology) ;
  • Hong, Kyung-Han (Dept. of Physics and Coherent X-ray Research Center, Korea Advanced Institute of Science and Technology) ;
  • Nam, Chang-Hee (Dept. of Physics and Coherent X-ray Research Center, Korea Advanced Institute of Science and Technology)
  • Received : 2003.06.27
  • Published : 2003.09.01

Abstract

A chirped-pulse amplification femtosecond Ti:sapphire laser operating at 1 KHz has been developed. The laser system consisted of a long-cavity femtosecond oscillator, a four-pass grating pulse stretcher, two multi-pass amplifiers and a double-pass grating pulse compressor. Thermal lensing at the amplifiers was reduced by cooling Ti:sapphire crystals using Peltier coolers. Gain narrowing and residual phase errors were compensated for by the use of an acousto-optic pulse shaper. The final laser output had an energy per pulse of 2.0 mJ and a pulse duration of 19.5 fs, reaching 0.1 TW at 1 KHz.

Keywords

References

  1. S. Backus, C. G. Durfee, G. Mourou, H. C. Kapteyn, and M. M. Murnane, '0.2- TW laser system at 1 kHz,' Opt. Lett., vol. 22, no. 16, pp. 1256-1258, 1997 https://doi.org/10.1364/OL.22.001256
  2. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, 'Generation of 0.66- TW pulses at 1 kHz by a Ti:sapphire laser,' Opt. Lett., vol. 23, no. 17, pp. 1384-1386, 1998 https://doi.org/10.1364/OL.23.001384
  3. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett., vol. 26, no. 7, pp. 465-467, 2001. https://doi.org/10.1364/OL.26.000465
  4. J. H. Sung, K. H. Hong, Y. H. Cha and C. H. Nam, “13-fs, 1-MW Ti:sapphire laser oscillator in a longcavity configuration,” Jpn. J. Appl. Phys., vol. 41, pp. L931-L934, 2002. https://doi.org/10.1143/JJAP.41.L931
  5. J. T. Hunt, J.A.Glaze,W. W. Simmons and P. A. Renard, “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt., vol. 17, no. 13, pp. 2053-2057, 1978. https://doi.org/10.1364/AO.17.002053
  6. G. Cheriaux, P. Rousseau, F. Salin, J. Chambaret, B. Walker, and L. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett., vol. 21, pp. 414-416, 1996. https://doi.org/10.1364/OL.21.000414
  7. R. Salin, C. L. Blanc, J. Squier, and C. Barty, “Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses,” Opt. Lett., vol. 23, no. 9, pp. 718-720, 1998. https://doi.org/10.1364/OL.23.000718
  8. C. L. Blanc, E. Baubeau, F. Salin, J. A. Squier, C. P. J. Barty, and C. Spielmann, “Toward a terawattkilohertz repetition-rate laser,” IEEE J. Quantum Electron., vol. 4, no. 2, pp. 407-412, 1998. https://doi.org/10.1109/2944.686748
  9. C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and Implementation of a TW-class high-average power laser system,” IEEE J. Quantum Electron., vol. 4, no. 2, pp. 395-406, 1998. https://doi.org/10.1109/2944.686747
  10. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of Ultrafast pulses by use of an acousto-optic programmable dispersive filter : pulse compression and shaping,” Opt. Lett., vol. 25, no. 8, pp. 575-577, 2000. https://doi.org/10.1364/OL.25.000575
  11. F. Verluise, V. Laude, J. P. Huignard, and P. Tournois, “Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,” J. Opt. Soc. Am. B, vol. 17, no. 1, pp. 138-145, 2000. https://doi.org/10.1364/JOSAB.17.000138
  12. S. H. Lee, K. H. Jung, J. H. Sung, J. H. Hong, and C. H. Nam, “Adaptive quantum control of DCM fluorescence in the liquid phase,” J. Chem. Phys., vol. 117, no. 21, pp. 9858-9861, 2002. https://doi.org/10.1063/1.1519000
  13. K. Ohno, T. Tanabe, and F. Kannari, “Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequencyresolved optical gating traces,” J. Opt. Soc. Am. B, vol. 19, no. 11, pp. 2781-2790, 2002. https://doi.org/10.1364/JOSAB.19.002781

Cited by

  1. Thermal Lensing Compensation in the Development of 30 fs Pulse Duration Chirped Pulse Amplification Laser System and Single-Shot Intensity-Phase Measurement vol.133, pp.1, 2018, https://doi.org/10.12693/APhysPolA.133.28
  2. An overview of LabVIEW-based f-to-2f spectral interferometer for monitoring, data acquiring and stabilizing the slow variations in carrier-envelope phase of amplified femtosecond laser pulses vol.157, 2018, https://doi.org/10.1016/j.ijleo.2017.11.175
  3. Long-term carrier-envelope-phase stabilization of a femtosecond laser by the direct locking method vol.16, pp.17, 2008, https://doi.org/10.1364/OE.16.012624