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Abstract: Meteorological data are often needed to evaluate the long-term effects of proposed hydrologic changes. The
evaluation is frequently undertaken using deterministic mathematical models that require daily weather data as input
including precipitation amount, maximum and minimum temperature, relative humidity, solar radiation and wind speed.
Stochastic generation of the required weather data offers alternative to the use of observed weather records. The precipi-
tation is modeled by a Markov Chain-exponential model. The other variables are generated by multivariate model with
means and standard deviations of the variables conditioned on the wet or dry status of the day as determined by the pre-
cipitation model. Ultimately, the objective of this paper is to compare Richardson’s model and the improved weather
generation model in their ability to provide daily weather data for the crop model to study potential impacts of climate
change on the irrigation needs and crop yield. However this paper does not refer to the improved weather generation

model and the crop model. The new weather generation model improved will be introduced in the Journal of KWRA.
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INTRODUCTION

One of major gaps in the generated and ob-
served hydrologic data is the quantification of
uncertainty as a result of climatic variability.
The meteorological variables needed for most
hydrologic models include precipitation, maxi-
mum and minimum temperatures, solar radiation,
wind velocity and relative humidity. These
variables are usually recorded daily, and most
deterministic models require daily values. The
objective of this study was to develop a tech-
nique for simulating daily value of precipitation,

maximum and minimum temperatures, solar
radiation, wind velocity and relative humidity.

1. Modeling methodology

To make a simulation model, the processes
are time dependent within each variable and
interdependent among the six variables. The
maximum temperature should be continuously
correlated because of heat storage and heat
transfer from one day to the next. The relation-
ship between radiation and temperature is close.
The maximum temperature will likely be high
on a sunny day with high solar radiation. The
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difference between maximum and minimum
temperatures will be related because of heat
storage and heat transfer in the atmosphere. Heat
transfer will obviously be related to wind speed.

The stochastic model can account for interre-
lations and seasonal variations. Ultimately, this
model should be able to provide daily weather
data for the crop model to study potential im-
pacts of climate change on the irrigation needs
and crop yield.

2. Precipitation

Daily precipitation amounts are determined
independently of the other variables. Any pre-
cipitation model that produces daily precipita-
tion values can be used for the precipitation
component.

Daily precipitation data generation models
can be classified broadly into four groups, namely,
those with the precipitation occurrence based on
the Markov chain-exponential model an alterna-
tive renewal processes, transition probability ma-
trix models, resampling models and time series
models of the ARMA type(Lee Won-Hwon,
1990). For this study a simple Markov Chain-
exponential model was used for the precipitation
component for simulating the other weather
variables.

Markov chains specify the state of each day
as ‘wet” or ‘dry” and develop a relation between
the state of the current day and the state of the
preceding days. A first order Markov chain
(Bailey, 1964) was used to describe the occur-
rence of wet or dry days. The order of the
Markov chain is the number of preceding days
taken into account. The Markov chain referred
to in the literature is first order (Gabriel and
Newmann, 1962; Caskey, 1963; Weiss, 1964;
Hopkins and Robillard, 1964; Feyerherm and
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Bark, 1965, 1967; Lowry and Guthrie, 1968;
Selvalingam and Miura, 1978; Stern, 1980a,b;
Garbutt et al., 1981; Richardson, 1981; Stern
and Coe, 1984).

For this study a first order Markov chain with
only two states, wet or dry, was used. A day with
total rainfall of 0.2mm (0.008 in) or a wet day
on day t given a wet day t-1; let Pr(#, /W) be
the probability that the process at time t will be
in “state” i given that at time t-1 the process was
in “state” j such as probability of a wet day on
day i given a wet day on day i-1; let Pi%/D.);
be the probability that the process at time t will
be in “state” i given that at time t-1 the process
was in “state” j such as probability of a wet day
on day i given a dry day on day i-1. Then

Pu(D, /W) =1-PxW, /W) M
Pr(D,/D,,)=1-P1(W,/D,) (2)

Where pyD /W) and Px(D,/D,,) are the
probability of a dry day given a wet day on day
i-1 and the probability of a dry day given a dry
day on day i-1, respectively. Therefore these is
commonly called the transition probability.

The shape of general distribution of precipita-
tion resembles an exponential distribution. 7o-
dorovic and Woolhiser(1974) have often used an
exponential distribution. The probability density
function is

prlt:A) =——dp’g:’1) = je &)

and is the probability distribution of the length
of the time interval between occurrences of the
event. The exponential distribution was simply
used to illustrate the technique for simulating

the six meteorological variable.
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Markov chain transition probabilities Pe(W, /W)
and pr(w, /D, ) and A are seasonal for most

locations. To simulate precipitation, the seasonal
nature of these parameters may be described by
using Fourier series or other periodic functions.

3. Maximum Temperature, Minimum Tem-
perature, Relative humidity, Wind speed,
and Solar radiation

Meteorological variables such as maximum
and minimum temperature, relative humidity,
wind speed, and solar radiation are not as diffi-
cult to apply to the stochastic model as precipi-
tation.

Joseph(1973) and Nicks(1975 )founded serial
correlation and cross correlation in each vari-
ables, and developed a model for generating
daily values of maximum and minimum tem-
peratures and solar radiation.
described by
Yevijevich (1972), assume that daily maximum

Following the procedure
and minimum temperatures, relative humidity,
wind speed, and solar radiation are a continuous
multivariate stochastic process with daily means
and standard deviations conditional on the wet
or dry state of the day.

For each day of the year, calculate the mean
and standard deviation of the maximum and
minimum temperatures, relative humidity, wind
speed, and solar radiation separately for wet and
dry days. This calculation yields five variables
estimates for each day of the year. The time se-
ries of each variable was reduced to a time se-
ries of residual clements by removing the peri-
odic means and standard deviations. These
variables were analyzed to determine serial cor-
relation and cross correlation between each pair
of variables. The daily means and standard de-
viations of five variables were determined for
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wet days and for dry days using 20 years of data
Fourier series were used to smooth the seasonal
means and standard deviations. The residual
elements were calculated by removing the peri-
odic mean and standard deviation by using the

equation;
LEOXGD oy @)
Zp,f(]) - O',o([) N
or
X 0Ky oo )
XD ——_U,I(IT ot

Where ¥7(;) and 5°(j) are the mean
and standard deviation for a dry day, X ()
and o!(j) are the mean and standard devia-
tion for a wet day, and 7 # () s the residual
component for variable j. The residual series for
each variable was dependent in time(serial cor-
relation), and the five series were interdepend-

ent(cross-correlation).

4, Multivariate Generation Model

Following the method described by Mata-
las(1967) and Ju Hun Lee(1991), calculate the
maximum and minimum temperature, relative
humidity, wind speed, and solar radiation re-
siduals for each observation by subtracting the
appropriate wet or dry mean and dividing by the
appropriate wet or dry standard deviation ob-
served on that day of the year. Next assume that
the maximum and minimum air temperature
residuals follow a multivariate weakly stationary
process defined by:

Xt = A% () + BE,,()) (6)

Where Zp,,(j) and X (j) are (5x1)

matrices of the maximum(j=1) and minimum
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temperature(j=2), relative humidity(j=3), wind
speed(j=4), and solar radiation residuals(j=5) for
days t and t-1 of year p; g,,(j) isa (5x])
matrix of independent random components that
are normally distributed with a mean of zero and
a variance of unity;

A and B are (5x5)matrices whose elements
are functions of the lag 0 and lag 1 serial and
cross correlation coefficients of the observed
residuals, defined so that any series of residuals
generated by a series of standard normal errors
exhibits the same serial and cross correlation as
the observed residuals

The A and B matrices are determined by the
matrices equations;

A=M M (7)
BB =M, -MM;'M/ ®)

M, and M, are the lag 0 and lag 1 correla-

tion matrices. The matrices may be written

1 Loy Py Py Pos
Py 1 Pey Pes Pes
M= Pen Loy 1 Posy Bos ©)
Py Pray Pray 1 Pas
Py Py Prsy Prsa | ]
Aoy Pan FAay Loy Aas
BAaeny Ao Aey Aes Pes
M= Pen Acy Ae Aca Aos (10)
Pan Purn Auy Aw Aas
| Ay Rea Asy Rsa Ae |

where P, ;. is the lag O cross correlation co-
efficient between residuals for each variables,

Pijk are the lag 1 cross correlation for the re-
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siduals of each variables, and p, ;, is the lag

1 serial correlation for variable j.

5. Test of the Model

Daily weather data for Montgomery, Alabama
in the U.S, and Sokch’o, South Korea were ob-
tained for testing the stochastic simulation tech-
nique. These locations were chosen to include
different climatic conditions. Daily values of
precipitation, maximum temperature, minimum
temperature, relative humidity, wind speed, and
solar radiation data were obtained. For each sta-
tion, 20 years of data were used to estimate six
variables.

5.1 Parameter Evaluation

The three parameters of the precipitation model
Pr(W. /W) Pr(W,/D_)  and A were de-
termined for each station. The year was partitioned
into 28 day period. The seasonal variation of each
parameter was described by using Fourier series.
The general equation used for each series is:

Z it
V,=CH+Z‘:Cjcos 3_]6§+9j (11)

7= -

2z

where V, is the value of the parameter for day
t, C, is the mean of V,, and C, is the am-
plitude and 8, the phase angle of the j-th har-
monic(Woolhiser and Pegram,1979). The esti-
mated coefficients are C_, Cj, and Hj, the
number of harmonics for the series, and given
for each parameter in Table 1. Figure 1 illus-
trates the fit provided by the Fourier series at
both locations.

The daily means and standard deviations of
maximum, minimum temperature, relative hu-

midity, wind speed, and solar radiation were
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Tablel. Fourier series coefficient estimates for Potential Harmonics of the Markov
Chain-exponential Precipitation Model in Montgomery, AL in the U.S, and Sokch’o,

South Korea
Parameter - - o, 9, €, 82
Montgomery, AL in U.S
APr(W /W) 0.44 0.03 26 0.05 1.1
b)YPr(W /D) 0.22 —0.04 1.1 -0.05 2.1
A mm-1 1317 0.1 0.2 0.2 0.2
Sokch’o in South Korea
Pr(W /W) 0.48 0.03 0.15 -0.14 -0.85
Pr(W /D) 0.2 0.03 2 -0.078 0.2
A mm-1 0.1 0.01 -0.03 0.03 0.6
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Figure 1. Observed and Fourier series estimates of the Markov Chain-Exponential Precipitation
model for pe(w /) (top), Py /D)(bottom), and A in Montgomery, AL in the U.S.
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Table 2. Fourier series coefficient estimates for the mean and standard deviation of the maxi-
mum-minimum temperatures, relative humidity, solar radiation and wind velocity on a
dry/wet day for Montgomery, AL in the U.S.

~ Parameter

Maximum Temperature, ° C

Mean Dry 25 9 2.8 0.5 3

Mean Wet 24.7 8.5 2.8 0 1
Standard Deviation Dry 6 3 -0.25 0 0
Standard Deviation Wet 6 2 -0.2 0.7 -0.5

Minimum Temperature, ° C

Mean Dry 11 10.8 2.85 0.8 3

Mean Wet 14.4 2.7 2.7 -0.5 0.2
Standard Deviation Dry 6.2 3 -0.2 0.5 1.9
Standard Deviation Wet 4.5 3.5 -0.2 1 -0.5

Relative Humidity, %

Mean Dry 42 3 2 35 -0.5

Mean Wet 62 7 0 2 0
Standard Deviation Dry 12 4 -0.25 0 0
Standard Deviation Wet 13 2 -0.2 0 0

Solar radiation, hour

Mean Dry 8.2 1.5 3 -1.5 -0.2

Mean Wet 3.75 -2.5 0 -1.5 -0.1
Standard Deviation Dry 2.83 0.2 -1 0.2 1
Standard Deviation Wet 2.33 1 -3 0 0

Wind Velocity mph

Mean Dry 6 1 -0.75 0.2 0.5
Mean Wet 7.3 1.7 -0.5 0.2 0.5
Standard Deviation Dry 2.3 1 -0.45 0 0

Standard Deviation Wet 2.1 0.9 -0.5 0 [¢]
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Table 3. Fourier series coefficient estimates for the mean and standard deviation of the max-
mum-minimum temperature, relative humidity, solar radiation and wind velocity on a
dry/wet day for Sokch’o, South Korea

Parameter Wet/ Dry c, G 8, G, o,

Maximum Temperature, ° C

Mean Dry 16.3 12 9 1 2

Mean Wet 14 11 2.6 13 4
Standard Deviation Dry 39 1.2 -1.2 0.7 0.4
Standard Deviation Wet 3 -0.7 0.3 0.9 0.9

Minimum Temperature, °

Mean Dry 8.7 13.5 2.7 0.8 1

Mean Wet 8.7 11.2 2.6 1.6 4.5
Standard Deviation Dry 33 0.8 -0.2 -0.4 34
Standard Deviation Wet 22 0.5 0.2 0.3 0.8

Relative Humidity, %

Mean Dry 64 17 -9.7 -2 2

Mean Wet 80.5 6 3 1 5
Standard Deviation Dry 14.4 3 -1.2 -3 5
Standard Deviation Wet 12.5 6 -1 1 2.5

Solar radiation, hour

Mean Dry 7.4 1 4 -0.6 -1
Mean Wet 227 0.4 -0.5 0.7 -1
Standard Deviation Dry 33 -1 0.1 0 2
Standard Deviation Wet 33 -0.3 1 1 2

Wind Velocity mph

Mean Dry 3.12 0.6 -0.6 -0.4 -2
Mean Wet 3 0.7 -0.8 -0.2 -0.7
Standard Deviation Dry 1.24 0.5 -0.2 0.3 1

Standard Deviation Wet 1.56 0.1 1 0.2 2
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Table 4. Mean, standard deviation, skewness coefficient, and kurtosis coefficient of the

residuals of maximum-minimum Temperatures, relative humidity, Solar radiation,

and wind speed

Variable
Montgomery, AL in the U.S
Maximum Temperature 0.03 1.01 -0.493 3.468
Minimum Temperature -0.01 1.04 -0.508 2.663
Relative Humidity -0.04 1.05 0.209 1.049
Solar Radiation -0.04 1.01 -0.276 2.406
Wind Speed -0.05 1.05 0.809 2.283
Sokcho’o, in South Korea
Maximum Temperature 0.049 1.04 0.355 2.779
Minimum Temperature -0.031 1.03 0.143 2.321
Relative Humidity -0.037 1.04 -0.660 2.194
Solar Radiation 0.001 0.96 -0.337 2.014
Wind Speed 0.036 1.03 1.75 3.212

calculated for each wet or dry of day. The ¢,
and @, values are given in Table 2 and 3 for

the two stations.
The residuals, ¥ ,., (/) , were calculated by

using (4) for each variable. The mean and stan-
dard deviations used in (4) were obtained from
the Fourier series representation. For new gen-
eration of residual, the residual should be ap-
proximately normal distribution using (5).

The serial dependence of the residuals should
be seen in the first order linear autoregressive
model. The serial correlation of a first-order
autoregressive model is given by p, = p/,
where p, is the serial correlation for lag k.

The mean, standard deviation, skewness coef-
ficient, and kurtosis coefficient were calculated
for residuals and are shown in Table 4. The re-
sults show that the use of (4) did reduce the se-
ries to residuals with a mean near zero and a
standard deviation near unity.

The skewness coefficients of the residual se-

ries were positive and negative but were near the
zero that should be obtained from normal dis-
tribution. The Kurotosis coefficients were also
all near a value of 3, which is indicative of a
normal distribution.

The serial correlation coefficients were cal-
culated for each residual series for lags up to 10
days. The serial correlation coefficients were
compared to a first order autoregressive model
with P =T where 7 is the lag 1 serial cor

relation coefficient from residual series. The
results for Sokch’o data are shown in Figure 2.
For five of the variables the series correlation
coefficient was similar for a first-order model.

The interdependence among the variables
wasdetermined by calculating the lag cross
correlation coefficients are shown in Table 5.
The cross correlation coefficients of the observed
and generated data are illustrated in Figure 3 for
Sokch’o in South Korea
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Figure 2. Serial correlation coefficients of maximum-minimum temperatures, relative humidity,
solar radiation, and wind speed for Sokch’o, South Korea.
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Table 5. Cross-correlation coefficients of maximum-minimum temperatures, relative humidity,
solar radiation, and wind speed for Montgomery, AL in the U.S and Sokch’o, South

Korea
Montgomery, AL in the U.S
Maximum-Minimum Temperature 0.498 0.517 0.375
Maximum-Relative Humidity -0.049 -0.205 -0.088
Maximum-Solar Radiation -0.003 0.180 0.115
Maximum-Wind Speed -0.013 -0.226 -0.318
Minimum-Relative Humidity 0.249 0.405 0.284
Minimum-Solar Radiation -0.165 -0.313 -0.209
Minimum-Wind Speed 0.078 0.053 -0.128
Relative Humidity-Solar Radiation -0.240 -0.652 -0.240
Relative Humidity-Wind Speed 0.098 0.118 -0.014
Solar Radiation-Wind Speed -0.122 -0.093 0.030
Sokch’o, South Korea
Maximum-Minimum Temperature 0.528 0.682 0.472
Maximum-Relative Humidity -0.104 -0.203 -0.033
Maximum-Solar Radiation 0.006 0.164 0.089
Maximum-Wind Speed 0.059 -0.009 -0.098
Minimum-Relative Humidity 0.016 -0.014 0.016
Minimum-Solar Radiation -0.072 -0.059 0.022
Minimum-Wind Speed 0.010 -0.053 -0.139
Relative Humidity-Solar Radiation -0.169 -0.337 -0.208
Relative Humidity-Wind Speed -0.182 -0.333 -0.267

Solar Radiation-Wind Speed 0.003 0.109 0.110
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Figure 3. Cross correlation coefficients obtained from observed and generated weather vasables

for Sokch’o. South Korea.
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Table 6. Mean daily maximum-minimum temperatures, relative humidity, wind speed, and
relative humidity for a 28 day period and for the year at Montgomery, AL in the U.S.

Period , Maﬁm&m, Temperature, £(D ‘D‘ay) - Maxsmum Tgfnpemmre, E(WetDay)
Obseved  Generated - Obseved Generated
1 56.5 574 S 61.7
2 62.6 60.8 63.6 62.8
3 69.9 68.2 66.4 66.9
4 76.5 76.8 74.3 73.3
5 82.9 86.8 81.8 80.4
6 89.0 89.5 86.9 86.6
7 92.9 92.4 89.7 90.5
8 933 93.0 90.4 91.1
9 91.7 90.8 89.9 88.6
10 87.0 85.2 82.8 83.2
11 77.8 76.6 76.1 76.3
12 68.4 67.0 71.4 69.4
13 60.8 59.7 61.5 64.1
Year 77.6 77.0 76.3 76.5
Period Maxzmam T#mp’éréture, F(Wet Day)
_ Obseved Generated
" ' 424 442
2 46.1 45.2
3 48.8 49.1
4 533 55.2
5 62.2 61.6
6 67.7 67.4
7 70.8 71.1
8 71.3 71.7
9 70.8 69.3
10 65.4 64.2
11 58.0 57.8
12 53.1 51.4
13 44 .4 46.4
Year 57.9 58.8
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kPe‘t?'i Gdk Maxamum Tempenture (Dry-Day), % Maximum Temperature {Wet Day), %
Obseved Generated Obseved Generated
1 40.0 435 63.9 70.4
2 36.9 41.2 64.0 67.4
3 34.6 379 60.2 63.0
4 36.0 36.2 54.1 59.3
5 40.0 39.7 57.6 57.4
6 42.6 422 57.0 57.0
7 44 .4 46.2 58.2 57.0
8 472 474 58.2 57.0
9 47.2 454 56.6 57.4
10 42.0 424 60.7 59.3
11 39.8 40.8 60.5 63.0
12 403 41.6 66.4 67.4
13 435 433 65.3 70.4
Year 41.1 42.0 60.2 62.0
Period Maximum Temperature (Dry Day), min Maximum Temperature (Wet Day), min
Obseved Generated Obseved Generated
1 391 403 84 64
2 428.1 430.8 87.7 105.4
3 536.3 4714 144.6 171.6
4 568.8 516.3 235.7 238.8
5 553.9 555.2 254.9 292.6
6 529.9 579.2 252.1 330.3
7 563.3 582.9 307.6 353.7
8 553.5 565.4 3324 359.4
9 499.1 530.8 306.5 338.0
10 547.6 486.8 214.6 283.3
11 452.1 443.6 109.2 203.2
12 412.4 411.0 87.5 121.8
13 361.3 396.3 58.7 68.4

Year 491.8 490.0 189.2 225.0
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6.9 8 8.8
6.7 9.0 8.4
6.4 8.1 7.8
6.2 7.1 7.1
5.8 6.2 7.0
5.1 5.2 5.6
49 5.7 5.6
5.1 6.5 6.1
5.2 6.0 6.0
5.6 7.6 6.0
6.2 7.7 8
6.7 7.3 8.7
490.0 189.2 225.0

5.2 Weather Variable Simulation

The generation of the precipitation data was ob-
tained by using the Markov Chain-exponential
model and the parameters of the precipitation
model were obtained from the Fourier series in
Table 1.

The serial correlation and cross correlation
coefficients define matrices #, and M, . These
are required for the multivariate generation of the
residuals of maximum-minimum temperatures,
relative humidity, solar radiation, and wind speed.
The seasonal means and standard deviations of the
five variables for wet and dry days were obtained
from the Fourier series.

Twenty years of daily precipitation, maximum,
minimum temperature, relative humidity, wind
speed and solar radiation data were generated to
compare with observed data of two stations.

The maximum-minimum temperatures, rela-
tive humidity, wind speed and solar radiation
data generated were compared with the observed
data in Table 6-7.

The generated means for all five variables for

each period of the year were comparable with
the observed means and gave a good description
of the seasonal variation of the variables.

The difference between the generated data
and observed data were thought to be due to the
Fourier series smoothing of the generated data.

SUMMARY AND CONCLUSIONS

This paper describes the use of models to
generate a simulated time series of weather
variables.

To generate a model, the precipitation is made
independent of other five variables and then the
five variables conditioned on the wet or dry
status of the day are generated.

For the precipitation model, a Markov
chain-exponential model was used to describe
precipitation.

The multivariate model was used to describe
maximum-minimum temperature, relative hu-
raidity, solar radiation and wind speed.

The model showed that generated data can
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represent the characteristics that existed in the
interdependence among the variables and are
closely described by the dependence structure
using eq. (6).

The skewness coefficient and Kurtosis coeffi-
cient could be used to determine normal distri-
bution or non-normal distribution.
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