Glutathione Content and the Activities of Glutathione-Synthesizing Enzymes in Fission Yeast are Modulated by Oxidative Stress

  • Lee, Yuk-Young (Division of Life Sciences, Kangwon National University) ;
  • Kim, Su-Jung (Division of Life Sciences, Kangwon National University) ;
  • Park, Eun-Hee (College of Pharmacy, Sookmyung Womens University) ;
  • Lim, Chang-Jin (Division of Life Sciences, Kangwon National University)
  • Published : 2003.09.01

Abstract

Glutathione (GSH) is an important factor in determining tolerance against oxidative stress in living organisms. It is synthesized in two sequential reactions catalyzed by ${\gamma}$-glutamylcysteine synthetase (GCS) and glutathione synthetase (GS) in the presence of ATP. In this work, the effects of three different oxidative stresses were examined on GSH content and GSH-related enzyme activities in the fission yeast Schizosaccharomyces pombe. GSH content in S. pombe was significantly enhanced by treatment with hydrogen peroxide, ${\beta}$-naphthoflavone (BNF) and tert-butylhydroquinone (BHQ). Simultaneously, they greatly induced GCS and GS activity. However, they did not have any effects on glutathione reductase activity. These results suggest that GCS and GS activities in S. pombe are up-regulated by oxidative stress.

Keywords

References

  1. Methods Enzymol. v.113 Glutathione reductase Carlberg,I.;B.Mannervik https://doi.org/10.1016/S0076-6879(85)13062-4
  2. Free Radic. Biol. Med. v.34 Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase Cyrne,L.;L.Martins;L.Fernandes;H.S.Marinho https://doi.org/10.1016/S0891-5849(02)01300-X
  3. Pharmacol. Ther. v.52 Glutathione metabolism and its role in hepatotoxicity DeLeve,L.;N.Kaplowitz https://doi.org/10.1016/0163-7258(91)90029-L
  4. J. Biol. Chem. v.275 Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network Dormer,U.H.;J.Westwater;N.F.McLaren;N.A.Kent;J.Mellor;D.J.Jamieson https://doi.org/10.1074/jbc.M004167200
  5. Biochim. Biophys. Acta v.1576 Oxidant regulation of the Saccharomyces cerevisiae GSH1 gene Dormer,U.H.;J.Westwater;D.W.S.Stephen;D.J.Jamieson https://doi.org/10.1016/S0167-4781(02)00248-8
  6. Z. Gerontol. Geriatr. v.35 no.2 Oxidative stress, age-dependent [correction of age-related] cell damage and antioxidative mechanisms Gosslau,A.;L.Rensing https://doi.org/10.1007/s003910200018
  7. Life Sci. v.72 Differential responses from seven mammalian cell lines to the treatments of detoxifying enzyme inducers Jiang,Z.Q.;C.Chen;B.Yang;V.Hebbar;A.N.T.Kong https://doi.org/10.1016/S0024-3205(03)00101-2
  8. J. Microbiol. v.39 Cloning and regulation of Schizosaccharomyces pombe gene encoding ribosomal protein S20 Lee,Y.J.;K.Kim;E.H.Park;K.S.Ahn;D.Kim;C.J.Lim
  9. Toxicol. Appl. Pharmacol. v.159 Effect of thioacetamide on the hepatic expression of γ-glutamylcysteine synthetase subunits in the rat Lu,S.C.;Z.Z.Huang;H.Yang;H.Tsukamoto https://doi.org/10.1006/taap.1999.8729
  10. Methods Enzymol. v.113 Glutathione synthetase from rat kidney Meister,A. https://doi.org/10.1016/S0076-6879(85)13052-1
  11. Glutathione: chemical, biochemical, and medical aspects Metabolism and function of glutathione Meister,A.;D.Dolphin(ed.);R.Poulson(ed.);R.Auramovic(ed.)
  12. Arch. Biochem. Biophys. v.358 Nitric oxide-dependent induction of glutathione synthesis through increased expression of γ-glutamylcysteine synthetase Moellering,D.;J.McAndrew;R.P.Patel;T.Cornwell;T.Lincoln;X.Cao;J.L.Messina;H.J.Forman;H.Jo;V.M. Darley-Usmar https://doi.org/10.1006/abbi.1998.0854
  13. J. Biol. Chem. v.273 An electrophile responsive element (EpRE) regulates β-naphthoflavone induction of the human γ-glutamylcysteine synthetase regulatory subunit gene Moinova,H.R.;R.T.Mulcahy https://doi.org/10.1074/jbc.273.24.14683
  14. Environ. Toxicol. Chem. v.20 Bioassay of cadmium using a DNA microassay: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium Momose,Y.;H.Iwahashi https://doi.org/10.1897/1551-5028(2001)020<2353:BOCUAD>2.0.CO;2
  15. J. Biol. Chem. v.272 Tumor necrosis factor increases hepatocellular glutathione by transcriptional regulation of the heavy subunit chain of γ-glutamylcysteine synthetase Morales,A.;C.Garcia-Ruiz;M.Miranda;M.Mari;A.Colell;E.Ardite;J.C. Fernandez-Checa https://doi.org/10.1074/jbc.272.48.30371
  16. J. Biol. Chem. v.272 Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence Mulcahy,R.T.;M.A.Wartman;H.H.Bailey;J.J.Gipp https://doi.org/10.1074/jbc.272.11.7445
  17. Enzyme Microb. Technol. v.26 A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses Penninckx,M. https://doi.org/10.1016/S0141-0229(00)00165-4
  18. Mol. Biol. Cell v.11 Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast Ross,S.J.;V.J.Findlay;P.Malakasi;B.A.Morgan https://doi.org/10.1091/mbc.11.8.2631
  19. Methods Enzymol. v.113 Glutathione biosynthesis; γ-Glutamylcysteine synthetase from rat kidney Seelig,G.F.;A.Meister https://doi.org/10.1016/S0076-6879(85)13050-8
  20. Toxicol. Appl. Pharmacol. v.163 Enhanced expression of pulmonary γ-glutamylcysteine synthetase heavy subunit in rats exposed to cadmium aerosols Shukla,G.S.;J.F.Chiu;B.A.Hart https://doi.org/10.1006/taap.1999.8884
  21. Toxicol. v.151 Cadmium-induced elevations in the gene expression of the regulatory subunit of γ-glutamylcysteine synthetase in rat lung and alveolar epithelial cells Shukla,G.S.;J.F.Chiu;B.A.Hart https://doi.org/10.1016/S0300-483X(00)00263-8
  22. Methods Enzymol. v.105 Glutathione disulfide (GSSG) efflux from cells and tissues Sies,H.;T.P.Akerboom https://doi.org/10.1016/S0076-6879(84)05062-X
  23. Free Radic. Biol. Med. v.28 Effects of menadione and hydrogen peroxide on glutathione status in growing Escherichia coli Smirnova,G.V.;N.G.Muzyka;M.N.Glukhovchenko;U.N.Oktyabrsky https://doi.org/10.1016/S0891-5849(99)00256-7
  24. Comp. Biochem. Physiol. Part C v.133 Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver Stephensen,E.;J.Sturve;L.Forlin
  25. Toxicol. Appl. Pharmacol. v.168 Regulation of γ-glutamate-cysteine ligase expression by oxidative stress in the mouse preimplantation embryo Stover,S.K.;G.A.Gushansky;J.J.Salmen;G.S.Gardiner https://doi.org/10.1006/taap.2000.9030
  26. J. Biol. Chem. v.275 The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae Sugiyama,K.;S.Izawa;Y.Inoue https://doi.org/10.1074/jbc.275.20.15535
  27. FEBS Letters v.408 Induction of glutathione synthetase by 1,10-phenan-throline Sun,Y. https://doi.org/10.1016/S0014-5793(97)00380-3
  28. Arch. Biochem. Biophys. v.342 no.1 Increased transiption of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion Tian,L.;M.M.Shin;H.J.Forman https://doi.org/10.1006/abbi.1997.9997
  29. Biochem. Biophys. Res. Commun. v.244 Up-regulation of glutamate-cysteine ligase gene expression by butylated hydroxytoluene is mediated by transcription factor AP-1 Tu,Z.;M.W.Anders https://doi.org/10.1006/bbrc.1998.8345