Culture and Identification of Bacteria from Marine Biofilms

  • Lee, Yoo-Kyung (Microbiology Laboratory, Korea Ocean Research & Development Institute) ;
  • Kwon, Kae-Kyung (Microbiology Laboratory, Korea Ocean Research & Development Institute) ;
  • Cho, Kyeung-Hee (Microbiology Laboratory, Korea Ocean Research & Development Institute) ;
  • Kim, Hyo-Won (Microbiology Laboratory, Korea Ocean Research & Development Institute) ;
  • Park, Jae-Hyun (Microbiology Laboratory, Korea Ocean Research & Development Institute) ;
  • Lee, Hong-Kum (Microbiology Laboratory, Korea Ocean Research & Development Institute)
  • Published : 2003.09.01

Abstract

We isolated and cultured bacteria that inhabited marine biofilms, and identified them by phylogenetic analysis using 16S rDNA sequences. In the marine environment, biofilms cover most subtidal and intertidal solid surfaces such as rocks, ships, loops, marine animals, and algae. The bacteria in most biofilms are embedded in extracellular polymeric substances that comprise mainly of exopolysaccharides. The exopolysaccharides are excreted from multiple bacterial species; therefore, biofilms are a good source for screening exopolysaccharide-producing bacteria. Thirty-one strains were cultured, and a total of 17 unique strains were identified. Phylogenetic analysis using 16S rDNA sequences indicated that the 17 strains belonged to ${\alpha}$-Proteobacteria (Ochrobactrum anthropi, Paracoccus carotinifaciens); ${\gamma}$-Proteobacteria (Pseudoalteromonas agarovorans, P. piscicida, Pseudomonas aeruginosa, Shewanella baltica, Vibrio parahaemolyticus, V. pomeroyi); CFB group bacteria (Cytophaga latercula, Tenacibaculum mesophilum); high GC, Gram-positive bacteria (Arthrobacter nicotianae, Brevibacterium casei, B. epidermidis, Tsukamurella inchonensis); and low GC, Gram-positive bacteria (Bacillus macroides, Staphylococcus haemolyticus, S. warneri).

Keywords

References

  1. Appl. Environ. Microbiol. v.68 Biodiversity of the bacterial flora on the surface of a smear cheese Brennan,N.M.;A.C.Ward;T.P.Beresford;P.F.Fox;M.Goodfellow;T.M.Cogan https://doi.org/10.1128/AEM.68.2.820-830.2002
  2. Appl. Microbiol. Biotechnol. v.58 Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU Brzostowicz,P.C.;M.S.Blasko;P.E.Rouviere https://doi.org/10.1007/s00253-002-0968-x
  3. Ph.D. Thesis Computer-assisted classification and identification of actinomycetes Chun,J.
  4. Curr. Opin. Biotechnol. v.9 Molecular genetics of bacterial attachment and biofouling Dalton,H.M.;P.E.March https://doi.org/10.1016/S0958-1669(98)80055-4
  5. Davey, M.E and G.A O'toole. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847-867 https://doi.org/10.1128/MMBR.64.4.847-867.2000
  6. Microbiol. Mol. Biol. Rev. v.64 Microbial biofilms: from ecolpgy to molecular genetics Davey,M.E.;G.A.O'toole https://doi.org/10.1128/MMBR.64.4.847-867.2000
  7. Cont. Shelf Res. v.20 Microbial biofilms in intertidal systems: an overview Decho,A.W. https://doi.org/10.1016/S0278-4343(00)00022-4
  8. PHYLIP(Phylogeny inference package), version 3.5c Felsenstein,J.
  9. Water Sci. Technol. v.43 Relevance of microbial extracellular polymeric substances (EPSs)--Part I: Structural and ecological aspects Flemming,H.C.;J.Wingender
  10. Appl. Environ. Microbiol. v.68 Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces Frias-Lopez, J.;A.L.Zerkle;G.T.Bonheyo;B.W.Fouke https://doi.org/10.1128/AEM.68.5.2214-2228.2002
  11. Adv. Dent. Res. v.11 Biofilm susceptibility to antimicrobials Gilbert,P.;J.Das;I.Foley https://doi.org/10.1177/08959374970110010701
  12. Vd. Int. J. Syst. Bacteriol. v.38 Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Holmes,B.;M.Popoff;M.Kiredijian;K.Kersters https://doi.org/10.1099/00207713-38-4-406
  13. FEMS Microbiol. Ecol. v.35 Phylogenetic analysis of the attached bacterial communities in the Great South Bay(Long Island) Kelley,K.M.;A.Y.Chistoserdov https://doi.org/10.1111/j.1574-6941.2001.tb00791.x
  14. Microb. Ecol. v.43 Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea(formerly Callianassa) Californiensis(decapoda:thalassinidae) Lawrence,J.R.;D.R.Korber;B.D.Hoyle;J.W.Costerton;D.E.Caldwell https://doi.org/10.1007/s00248-001-1043-3
  15. J. Bacteriol. v.173 Optical sectioning of microbial biofilms Lawrence,J.R.;Korber,B.D.;Hoyle,J.W.;Costerton;D.E.Caldwell https://doi.org/10.1128/jb.173.20.6558-6567.1991
  16. Int. J. Syst. Evol. Microbiol. v.50 Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots,and description of Ochrobactrum tritici sp.nov. and Ochrobactrum gruninense sp. nov Lebuhn,M.;W.Achouak;M.Schloter;O.Berge;H.Meier;M.Barakat;A.Hartmann;T.Heulin https://doi.org/10.1099/00207713-50-6-2207
  17. Environ. Microbiol. v.4 Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila Lopez-Garcia,P.;F.Gaill;D.Moreira https://doi.org/10.1046/j.1462-2920.2002.00286.x
  18. Int. J. Biol. Macromol. v.26 The role of intermolecular interactions: studies on model systems for bacterial biofilms Mayer,C.;R.Moritz;C.Kirschner;W.Borchard;R.Maibaum;J.Wingender;H.C.Flemming https://doi.org/10.1016/S0141-8130(99)00057-4
  19. J. Gen. Microbiol. v.139 Phylogenetic deversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis Nakagawa,Y.;K.Yamasato https://doi.org/10.1099/00221287-139-6-1155
  20. FEMS Microbiol. Lett. v.198 Effects of lipids on n-alkane attenuation in media supporting oil-utilizing microorganisms from the oily Arabian Gulf coasts Radwan,S.S.;H.A. Al-Aawadi;M.Khanafer https://doi.org/10.1111/j.1574-6968.2001.tb10625.x
  21. Int. J. Syst. Evol. Microbiol. v.53 Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium Romanenke,L.A.;N.V.Zhukova;M.Rhode;A.M.Lysenko;V.Mikhailov;E.Stackerbrandt https://doi.org/10.1099/ijs.0.02234-0
  22. Mol. Biol. Evol. v.4 The neighbor-joining method: a new method for reconstructing phylogenetic trees Saitou,N;M.Nei
  23. Environ. Microbiol. v.4 Enrichment versus biofilms culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocabon-degrading microtial communications Stach,J.E.;R.G.Burns https://doi.org/10.1046/j.1462-2920.2002.00283.x
  24. Int. J. Syst. Evol. Microbiol. v.51 Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticu comb. nov. and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Suzuki,M.;Y.Nakagawa;S.Harayama;S.Yamamoto https://doi.org/10.1099/00207713-51-5-1639
  25. J. Infect. Chemother. v.7 Glycopeptide susceptibility profiles of nosocomial multiresistant Staphylococcus haemolyticus isolates Tabe,Y;A.Nakamura;J.Igari https://doi.org/10.1007/s101560100026
  26. Necleic Acids Res. v.24 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Thompson,J.D.;T.J.Gibson;F.Plewniak;F.Jeanmougin;D.G.Higgins
  27. Int. J. Syst. Evol. Microbiol. v.53 Vibrio Kanaloae sp.nov.,Vibrio pomeroyi sp.nov.and Vibrio chagasii sp.nov .,from sea water and marine mammals Thompson,F.L.;C.C.Thomson;Y.Li;B. Gomez-Gil;J.Vandenberghe;B.Hoste;J.Swings https://doi.org/10.1099/ijs.0.02490-0
  28. Int. J. Syst. Bacteriol. v.49 Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin producing bacterium Tsubokura,A.;H.Yoneda;H.Mizuta https://doi.org/10.1099/00207713-49-1-277
  29. Int. J. Syst. Evol. Microbiol. v.53 Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant Venkateswaran,K.;M.Kempf;F.Chen;M.Satomi;W.Nicholson;R.Kern https://doi.org/10.1099/ijs.0.02311-0
  30. Int. J. Syst. Bacteriol. v.36 Numerical taxonomy of vibrios isolated from aquatic environments West,P.A.;P.R.Brayton;T.N.Bryant;R.R.Colwell https://doi.org/10.1099/00207713-36-4-531
  31. Community structure and co-operation in biofilms An overview of biofilms as functional communities Wimpenny,J;D.Allison(ed.);P.Gilbert(ed.);H. Lappin-Scott(ed.);M.Wilson(ed.)
  32. Methods Enzymol. v.336 Isolation and biochemical characterizstion of extracellular polymeric substances from Pseudomonas aeruginosa Wingender,J.;M.Strathmann;A.Rode;A.Leis;H.C. Flemming https://doi.org/10.1016/S0076-6879(01)36597-7
  33. Microb. Ecol. v.35 situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics Wolfaardt,G.M.;J.R.Lawrence;R.D.Robarts;D.E.Caldwell https://doi.org/10.1007/s002489900077
  34. Int. J. Syst. Bacteriol. v.48 Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Ziemke,F.;M.G.Hofle;J.Lalucat;R. Rossello-Mora https://doi.org/10.1099/00207713-48-1-179