Abstract
In this paper, we studied the speaker adaptation methods that improve the speaker independent recognition system. For the independent speakers, we compared the results between bigram and back-off bigram, MAP and MLLR. Cause back-off bigram applys unigram and back-off weighted value as bigram probability value, it has the effect adding little weighted value to bigram probability value. We did an experiment using total 39-feature vectors as featuring voice parameter with 12-MFCC, log energy and their delta and delta-delta parameter. For this recognition experiment, We constructed a system made by CHMM and tri-phones recognition unit and bigram and back-off bigrams language model.
본 논문에서는 화자 독립 시스템에서 필요한 화자 적응 방법에 관해 연구하였다. 훈련에 참여하지 않은 새로운 화자에 대해서 bigram과 back-off bigram, MAP와 MLLR의 결과를 비교해 보았다. back-off bigram은 훈련중 나타나지 않은 bigram 확률을 unigram과 back-off 가중치를 적용하므로 bigram 확률 값에 약간의 가중치를 더하는 효과를 가져온다. 음성의 특징 파라미터로는 12차의 MFCC와 log energy, 1차 미분, 2차 미분을 사용하여 총 39차의 특징 벡터를 사용하였다. 인식 실험을 위해 CHMM, 삼중음소(tri-phones)의 인식 단위, 그리고 bigram과 back-off bigram의 언어 모델을 사용한 시스템을 구성하였다.