Insulin-like growth factor-I 유전자의 조직 특이적 발현에 대한 조절기전

Regulatory Mechanism in Tissue-specific Expression of Insulin-like Growth Factor-I Gene

  • 안미라 (전남대학교 수의과대학 수의학과 및 생물공학연구소)
  • 발행 : 2003.08.01

초록

Insulin-like growth factor-I (IGF-I) 유전자의 발현은 사람 및 쥐에서 두 개의 promoters (P1과 P2)로부터의 전사와 alternative RNA splicing 및 differential RNA polyadenylation과 같은 복잡한 기전들에 의하여 조절되는데 조직에 따라 성장호르몬을 포함한 여러 요소들이 관여하는 것으로 알려져 있다. 또한 사람의 IGF-I 유전자 exon 1의 upstream에 존재하는 P1에 hepatocyte nuclear factor l$\alpha$와 CAAT/enhancer-binding protein (C/EBP) isoform 들이 결합하여 조직 및 발달단계 특이한 발현에 중요한 역할을 할 것으로 제안되었지만, exon 1의 downstream sequence가 IGF-I 유전자의 조직 특이적 발현을 조절하는 지에 대하여는 연구되어 있지 않다. 연령이 다른 쥐의 간 및 뇌 조직에서 total RNA를 분리하고 solution hybridization/RNase protection 방법으로 분석하여 IGF-I 유전자의 발현이 태어난 후 간 조직에서는 점차적으로 증가하였지만 뇌조직에서는 감소하여 발달단계에 따라 조직 특이하게 발현되는 것을 확인하였다. IGF-I exon 1의 주요한 전사 개시점으로부터 아래쪽에 존재하는 C/EBP 결합부위를 포함하고 있는 cis-acting element에 해당하는 oligonucleotide들과 간 및 뇌조직에서 분리한 핵단백질들을 이용하여 DNA-결합 활성을 가진 분자량이 다른 C/EBP$\alpha$나 C/EBP$\beta$ 단백질들을 확인하였으며 southwestern 및 western immnoblotting 분석을 하여 간 조직의 핵 추출물에서는 42$^{C}$EBP$\alpha$/, 와 p38$^{C}$EBP$\alpha$/, p35$^{C}$EBP$\alpha$/, p38$^{C}$EBP$\beta$/, 그리고 p35$^{C}$EBP$\beta$/가 IGF-I exon 1 oligonucleotide와 복합체를 형성하고 뇌 조직에서는 p42$^{C}$EBP$\alpha$과 p38$^{C}$EBP$\beta$가 복합체 형성에 관여하는 것으로 나타났다. 이러한 결과들은 FRE-C/EBP isoform 복합체 형성이 IGF-I 유전자 발현의 조직 특이적 조절에 중요한 역할을 할 것으로 제안한다.할을 할 것으로 제안한다.

The present study was aimed at investigating the regulatory mechanism in tissue-specific expression of insulin-like growth factor-I (IGF-I) gene. The expression of IGF-I gene was determined by a solution hybridization/RNase protection assay using total RNA prepared from rat liver or brain of various ages. The levels of IGF-I transcripts were increased in liver gradually after birth, but decreased in brain. By using an oligonucleotide (FRE) corresponding to the C/EBP binding site of the rat IGF-I exon 1, multiple forms of C/EBP${\alpha}$ and C/EBP${\beta}$ proteins, which have DNA-binding activity, were detected in the rat liver or brain. Western immunoblot and southwestern analyses show that p42$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\alpha}$/, p35$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\beta}$/, and p35$\^$C/EBP${\beta}$ form specific complexes with the IGF-I exon 1 oligonucleotide in liver nuclear extract and that p42$\^$C/EBP${\alpha}$/ and p38$\^$C/EBP${\beta}$/ form complexes in brain. These data suggest that the formation of FRE-C/EBP isoform complexes may play important roles in the tissue-specific regulation of IGF-I gene expression.

키워드

참고문헌

  1. Endocr. Rev. v.16 Insulin-like growth factors and their binding proteins: biological actions Jones,J.I.;D.R.Clemmons
  2. Physiol. Rev. v.76 Growth differentiation, and survival: multiple physiological functions for insulin-like growth factors Stewart,C.E.;P.Rotwein
  3. Diabetes Metab. Rev. v.12 Insulin-like growth factor Ⅰ: physiology, metabolic effects and clinical uses Froesch,E.R.;M.A.Hussain;C.Schmid;J.Zapf https://doi.org/10.1002/(SICI)1099-0895(199610)12:3<195::AID-DMR164>3.0.CO;2-G
  4. Mol. Cell. Endocrinol. v.126 Essential promoter elements are located within the 5' untranslated region of human insulin-like growth factor-Ⅰ exon Ⅰ Mittanck,D.W.;S.W.Kim;P.Rotwein https://doi.org/10.1016/S0303-7207(96)03979-2
  5. Mol. Cell. Endocrinol. v.114 The major promoter of the rat insulin-like growth factor-Ⅰgene binds a protein complex that is required for basal expression An,M.R.;W.L.Lowe https://doi.org/10.1016/0303-7207(95)03644-M
  6. DNA Cell Biol. v.11 Functional analysis of the rat insulin-like growth factor Ⅰ gene and identification of an IGF-Ⅰ gene promoter Hall,L.J.;Y.Kajimpto;D.Bichell;S.W.Kim;P.L.James;D.Counts;L.J.Nixon;G.Tobin;P.Rotwein
  7. Endocrinology v.136 Transcriptional repression of insulin-like frowth factorⅠby glucocorticoids in rat bone cells Delany,A.M.;E.Canalis https://doi.org/10.1210/en.136.11.4776
  8. Exp. Gerontol. v.31 Epidermal growth factor and platelet-derived growth factor regulate the activity of the insulin-like growth factor Ⅰgene promoter Li,S.;R.Baserga https://doi.org/10.1016/0531-5565(95)02011-X
  9. Endocrinology v.138 Prostaglandin A2 specifically represses insulin-like growth factor-Ⅰ gene expression in C6 rat glioma cells Bui,T.;C.Kuo;P.Rotwein;D.S.Straus https://doi.org/10.1210/en.138.3.985
  10. J. Biol. Chem. v.271 Identification of the cAMP response element that controls transcriptional cativation of the insulin-like growth factor-Ⅰ gene by prostaglandin E2 in osteoblasts Thomas,M.J.;Y.Umayahara;H.Shu;M.Centrella;P.Rotwein;T.L.McCarthy https://doi.org/10.1074/jbc.271.36.21835
  11. Endocrine Rev. v.15 Nutritional regulation of the insulin-like growth factors Thissen,J.P.;J.M.Ketelslegers;L.E.Underwood
  12. Mol. Cell. Endocrinol. v.152 Developmental regulation of insulin-like growth factor-Ⅰ and growth hormone receptor gene expression Shoba,L.;M.R.An;S.J.Frank;W.L.Lowe https://doi.org/10.1016/S0303-7207(99)00045-3
  13. Mol. Endocrinol. v.8 Expression of the insulin-like growth factor Ⅰ gene is stimulated by the liver-enriched transcription factors C/EBPα and LAP Nolten,L.A.;F.M. A. van Schaik;P.H.Steenbergh;J.S.Sussenbach https://doi.org/10.1210/me.8.12.1636
  14. Mol. Endocrinol. v.9 Hepatocyte nuclear factor 1α activates promoter Ⅰ of the human insulin-like growth factor Ⅰgene via two distinct binding sites Nolten,L.A.;P.H.Steenbergh;J.S.Sussenbach https://doi.org/10.1210/me.9.11.1488
  15. J. Biol. Chem. v.277 Protein kinase C-dependent, CCAAT/enhancer-binding protein β-mediated expression of insulin-like growth factor Ⅰ gene Umayahara,Y.;Y.Kajimoto;Y.Fujitani;S.Gorogawa;T.Yasuda;A.Kuroda;K.Ohtoshi;S.Yoshida;D.Kawamori;Y.Yamasaki;M.Hori https://doi.org/10.1074/jbc.M110827200
  16. Biochim. Biophys. Acta v.1518 Effects of mercuric chloride on the regulation of expression of the acute phase response components α₁-acid glycoprotein adn C/EBP transcription factors Yiangou,M.;S.G.Scott;J.P.Rabek;M.R.An;W.Xiong;J.Paraconstantinou https://doi.org/10.1016/S0167-4781(01)00165-8
  17. Mol. Cell. Biol. v.16 Evidence for posttranscriptional regulation of C/EBP α and C/EBPβ isoform expression during the lipopolysaccharide-mediated acute-phase response An,M.R.;C.C.Hsieh;P.D.Reisner;J.P.Rabek;S.G.Scott;D.T.Kuninger;J.Papaconstantinou
  18. J. Biol. Chem. v.268 trans-Activation of the α₁-acid glycoprotein gene acute phase responsive element by multiple isoforms of C/EBP and glucocorticoid receptor Alam,T.;M.R.An;R.C.Mifflin;C.C.Hsieh;X.Ge;J.Papaconstantinou
  19. Anal. Biochem. v.162 Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction Chomczynski,P.;N.Sacchi
  20. Kor. J. Biotechnol. Bioeng. v.17 Metabolic regulation of insulin-like growth factor-Ⅰ expression An,M.R.
  21. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  22. J. Biol. Chem. v.265 cis-Acting negative regulatory element of prolactin gene Zhang,Z.H.;V.Kumar;R.T.Rivera;J.Chisholm;D.K.Biswas
  23. J. Biol. Chem. v.272 no.50 CCAAT/enhancer-binding protein δ activates insulin-like growth factor-Ⅰ gene transcription in osteoblasts. Identification of a novel cyclic AMP signaling pathway in bone Umayahara,Y.;C.Ji;M.Centrella;P.Rotwein;T.L.McCarthy https://doi.org/10.1074/jbc.272.50.31793
  24. Genes Dev. v.5 Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells Cao,Z.;R.M.Umek;S.L.McKnight https://doi.org/10.1101/gad.5.9.1538
  25. Proc. Natl. Acad. Sci. v.90 CCAAT/enhancer binding protein mRNA is translated into multiple proteins with different transcirption activation potentials Ossipow,V.P.;P.Descombes;U.Schibler https://doi.org/10.1073/pnas.90.17.8219
  26. Cell v.61 The protein Id: a negative regulator of helix-loop-helix DNA-binding proteins Benezra,R.;R.L.Davis;D.Lockshon;D.L.Turner;H.Weintraub https://doi.org/10.1016/0092-8674(90)90214-Y
  27. Genes Dev. v.6 CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription Ron,D.;J.F.Habener https://doi.org/10.1101/gad.6.3.439
  28. Mol. Cell. Biol. v.13 Regulation of the C/EBP-related gene gadd153 by glucose deprivation Carlson,S.G.;T.W.Fawcett;J.D.Bartlett;M.Bernier;N.J.Holbrook