Replacement of the in vivo Bioassay for Erythropoietin with the in vitro Bioassay

Erythropoietin in vivo 시험법의 in vitro 대체 시험법 확립

  • 백상훈 (㈜녹십자 R&D 종합연구소) ;
  • 김진만 (㈜녹십자 R&D 종합연구소) ;
  • 권기성 (㈜녹십자 R&D 종합연구소) ;
  • 박송용 (㈜녹십자 R&D 종합연구소) ;
  • 허재욱 (㈜녹십자 R&D 종합연구소)
  • Published : 2003.08.01

Abstract

In vivo bioassays for biological medicines have been considered final resort to unequivocally assess the biological activities for them because there are some cases in which the biological activities obtained from in vivo bioassay and in vitro bioassay quite differ each other. The in vivo biological activity of EPO depends on its sialic acid contents which confer microheterogeneity-isoforms to this protein. We have devise a method which consists of a in vitro bioassay using BaF3 cell line and a capillary zone electrophoresis (CZE) for the measurement of the EPO isoform distribution. The biological activity of EPO obtained using in vitro bioassay with BaF3 cell line showed good correlation (C.V.(%) 7.34, 5.85, 8,16, 8.08, 8.8) to EPO content measured either spectrophotometric assay (A280 0.1 % =0.743) or radio immunoassay. The assay validation results of in vitro bioassay with 3 lot of in house EPO showed good results to EPO content measured either in vivo assay or radio immunoassay. and also showed good results the robustness of our method in terms of precision, accuracy, repeatability. The isoform distribution for EPO-BRP (1 : 1 mixture of epoetin-${\alpha}$ and epoetin-${\beta}$, European Pharmacopoeia) by CZE method resulted in isoform 2 through isoform 8. The major peaks in electrophoregram were composed of isoform 3 through 7. Our recombinant EPO (epoetin-${\alpha}$) having equivalent in vivo biological activity showed the isoform distribution of isoform 3 through 9. The major peaks consisted of isoform 4 through 8. The peak area of isoform 4 was always smaller than that of isoform 5. The preparations of recombinant epoetin-${\alpha}$ with lower in vivo biological activity than EPO-BRP showed the isoform 2 through 8 in their electrophoregrams whose major peaks consisted of the isoform 3 through 7. The peak area of isoform 4 was larger than that of isoform 5.

현재는 재조합 Erythropoietin의 생물학적 활성을 mouse를 이용한 in vivo bioassay로 실시하고 있으나, 이 방법의 여러가서 불편함으로 인하여, 이를 대체하기 위해 Ba/F3 세포주를 이용한 in vitro assay 방법을 확립하였으나, 위에 상술한 바와 같이 in vitro assay는 erythropoietin의 당분포에 의한 차이를 보이지 않게 때문에, 이를 보완하기 위해서는 in vivo bio-activity와 정량적인 상관관계가 있는 당단백질의 isoform 분석법인 Capillary zone electrophoresis (CZE) 와 sialic acid 함량 결과를 동시에 분석해야 했다. 위의 결과 sialic acid 함량은 erythropoietin 원액에서 10 mol/mol,EPO 이상의 sialic acid 함량을 가져야 되며, CZE 결과는 재조합 erythropoietin이 isoform 분포가 isoform 3의 경우 5.594~0.593%, isoform 4의 경우 31.598~11.704%, isoform 5의 경우 37.033~29.301%, isoform 6의 경우 27.837~18.807%, isoform 7의 경우 17.085~7.824%, isoform 8의 경우 7.642~1.964%을 보여줌과 동시에 isoform 4의 면적은 isoform 5의 면적보다 항상 작아야한다. 이상 두 가지 시험결과와 in vitro assay 결과를 combine해서 in vivo assay를 대체할 수 있다는 좋은 실험적 data를 얻었으므로 이상 위의 3가지 분석법을 활용한 combined in vitro bioassay 법의 기초를 확립하였다.

Keywords

References

  1. Pharmeuropa v.11 no.2 Assessment of the suitability of a capillary zone electrophoreis method for determining Isoform distribution of erythropoietin Bristow,A.;E.Charlton
  2. Proc. Natl. Acad. Sci. v.86 Relationship between sugar chain and biological activity of recombinant human erythropoietin produced in chinese hamster ovary cells Takeuchi,M.;N.Inoue;T.W.Strickland;M.Kibota;M.Wada;R.Shimizu;S.Hoshi;H.Kozutsumi;S.Takasaki;A.Kobata https://doi.org/10.1073/pnas.86.20.7819
  3. J. Biol. Chem. v.265 Role of sugar chains in the in virto biological activity of human erythropoietin produced in recombinant chinese hamster ovary cells Takeuki,M.;S.Takasaki;M.Shimada;A.Kobata
  4. The third annual KFDA international symposium Ⅱ, regulatory issues in biologics and biotechnological products Standardization of recombinant somatropin Bristow,A.
  5. Personal communication with Dr. Adrian F. Bristow in NIBSC Huh,J.W.
  6. J. Cell. Physiology v.140 Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or Erythropoietin Kitamura,T.;T.Tange;T.Terasawa;S.Chiba;T.Kuwaki;K.Miyagawa;Y.F.Piao;K.Miyazono;A.Urabe;F.Takaku https://doi.org/10.1002/jcp.1041400219
  7. Blood v.76 Human erythropoietin receptor : cloning, expression and biologic characterization Jones,S.S.;A.D.D'Andrea;L.L.Haines;G.G.Wong
  8. British. J. Cancer v.84 Development and characterization of novel erythropoiesis stimulating protein(NESP) Egrie,J.C.;J.K.Browne https://doi.org/10.1054/bjoc.2001.1746
  9. Biochim. Biophys. Acta v.77 Slater,T.F.(et al.) https://doi.org/10.1016/0006-3002(63)90513-4
  10. J. Immunol. Methods v.65 Mossman,T. https://doi.org/10.1016/0022-1759(83)90303-4
  11. J. Immunol. Methods v.89 Denizot,F;R.Lang https://doi.org/10.1016/0022-1759(86)90368-6
  12. Cancer Research v.47 Carmichael,J.(et al.)
  13. Bioorg. & Med. Chem. Lett. v.1 Barltrop,J.A.(et al.) https://doi.org/10.1016/S0960-894X(01)81162-8
  14. Cancer Commun. v.3 Cory,A.H.(et al.)
  15. Mol. Biol. Cell v.3 no.SUP. Riss,T.L.;R.A.Maravec
  16. CellTiter 96R Non-Radioactive cell proliferation assay technical bulletin #TB112,
  17. Methods in Molecular Biology Theory and practice ELISA Crowther,J.R.
  18. Biometrics, New tables for multiple comparisons with a control Dunnett,C.W.