Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone)/ Poly(ethylene oxide) Microcapsules Containing Erythromycin

에리트로마이신을 함유한 생분해성 폴리카프로락톤/폴리(에틸렌 옥사이드) 마이크로캡슐의 제조 및 특성

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김승학 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 이해방 (한국화학연구원 화학소재연구부) ;
  • 홍성권 (충남대학교 고분자공학과)
  • Published : 2003.09.01

Abstract

The purposes of this work were the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) / poly(ethylene oxide) (PEO) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate for the diameter and form of the microcapsules were observed using image analyzer and scanning electron microscope. The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release test of the microcapsules was characterized by UV/vis. spectra. As a result, the microcapsules were made in spherical fonns with a mean particle size of 170 nm∼68 $\mu$m. And the work of adhesion between water and PCL/PEO increased with increasing the content of PEO, probably due to the increased the hydrophilicity. It was also found that the drug release rate from the microcapsules significantly increased with increasing the content of PEO, which could be also attributed to the increasing of the hydrophilic groups or the degree of adhesion force at interfaces.

액중건조법을 사용하여 PCL/PEO 마이크로캡슐을 제조하여 형태적 분석 및 제조 조건에 따른 특성을 살펴보고 거동을 통하여 약물 전달 체계로서의 가능성을 고찰하였다. 유화제의 종류 및 농도 그리고 교반 속도에 따른 마이크로캡슐의 입경과 형태의 변화에 대하여 광학 현미경과 SEM을 사용하여 관찰하였다. 또한 접촉각 측정을 통해 PCL/PEO와 약물간의 계면에서의 부착일을 살펴보았으며, 방출 거동을 알아보기 위해 UV/vis. 흡광 광도법으로 흡광도를 측정 하여 용출된 약물의 양을 정량하였다. 그 결과, 마이크로캡슐의 평균 입경이 170 nm∼68 $\mu$m인 구형의 형태를 나타내었으며, PEO의 함량이 증가함에 따라 친수성기가 증가하여 물에 대한 부착일이 증가함을 알 수 있었다. 또한 약물 방출 실험을 통하여 PEO의 함량을 높게 하고 교반 속도를 빠르게 하여 제조한 마이크로캡슐의 약물 방출이 상당히 빠름을 알 수 있었다 이는 PEO의 함량이 증가함에 따라 친수성기가 증가하고 계면력이 증가하기 때문이라 사료된다.

Keywords

References

  1. Polym. Eng. Sci. v.29 R.Arshady https://doi.org/10.1002/pen.760292404
  2. Drug Dev. Ind. Pharm. v.18 G.G.Encina;S.P.Sangliv;J.G.Nairn https://doi.org/10.3109/03639049209043711
  3. J. Polym. Sci. Polym. Chem. v.29 Y.Naka;I.Kaetsu;Y.Yamamoto;K.Hayashi https://doi.org/10.1002/pola.1991.080290814
  4. Intern. J. Pharm. v.84 F.Pavanetto;B.Conti;I.Genta;P.Giunchedi https://doi.org/10.1016/0378-5173(92)90055-7
  5. J. Colloid Interf. Sci. v.197 A.Kim;S.J.Park;J.R.Lee https://doi.org/10.1006/jcis.1997.5208
  6. Biodegradable Polymers as Drug Delivery Systems D.H.Lewis;M.Chasin;R.Langer(Ed.)
  7. J. Control. Release v.16 M.Vert;S.Li;H.Garreau https://doi.org/10.1016/0168-3659(91)90027-B
  8. Polymers in Medicine v.3 Preparation and Evaluation of Lactide/glycolide Copolymers for drug Delivery R.L.Dunn;J.P.English;J.D.Strobel;D.R.Cowsar;T.R.Tice;C.Migliaresi(et al.)(Eds.)
  9. Polymer(Korea) v.26 S.J.Park;S.H.Kim;J.R.Lee;H.B.Lee;S.K.Hong
  10. Fertilility and Sterility v.31 L.R.Beck;D.R.Cowsar;D.H.Lewis;R.J.Cosgrove;C.T.Riddel;S.L.Lowry;T.Epperly https://doi.org/10.1016/S0015-0282(16)44002-1
  11. J. Microencapsulation v.2 V.Vidmar;S.Pepeljnjak;I.Jalsenjak https://doi.org/10.3109/02652048509033840
  12. J. Microencapsulation v.5 N.Leelarasamee;S.A.Howards;C.J.Malanga;J.K.H.Ma https://doi.org/10.3109/02652048809056478
  13. Methods Enzymol. v.112 T.Kato;K.Unno;A.Goto https://doi.org/10.1016/S0076-6879(85)12013-6
  14. J. Food. Sci. v.51 R.Ziberhoim;I.J.Kopelman;Y.Talmon https://doi.org/10.1111/j.1365-2621.1986.tb13111.x
  15. J. Microencapsulation v.1 K.Uno;Y.Ohara;M.Arakawa;T.Kondo https://doi.org/10.3109/02652048409031531
  16. Biomaterials v.22 Y.Y.Yang;T.S.Chung;N.P.Ng
  17. J. Kor. Soc. Dyers & Finishers v.9 M.S.Kim;S.M.Park
  18. Physical Chemistry of Surfaces(5 Ed.) A.W.Adamson
  19. J. Biomed. Mater. Res. v.36 K.J.Lowry;K.R.Hamson;L.Bear;Y.B.Peng;R.Celaluce;M.L.Evans;O.J.Anglen;W.C.Allen https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<536::AID-JBM12>3.0.CO;2-8
  20. J. Biomed. Mater. Res. v.27 L.Zhang;C.C.Chu;I.H.Loh https://doi.org/10.1002/jbm.820271110
  21. Vasc. Surg. v.27 M.Strock;K.H.Orend;T.Schmitzrixen https://doi.org/10.1177/153857449302700601
  22. J. Am. Soc. Artif. Intern. Organs v.6 E.W.Merrill;E.W.Salzman
  23. J. Biomed. Mater. Res. v.23 J.H.Lee;J.Kopecek;J.D.Andrade https://doi.org/10.1002/jbm.820230306
  24. J. Colloid Interf. Sci. v.226 S.J.Park;M.S.Cho;J.R.Lee https://doi.org/10.1006/jcis.2000.6787
  25. J. Colloid Interf. Sci. v.206 S.J.Park;J.B.Donnet https://doi.org/10.1006/jcis.1998.5672
  26. Polym. J. v.31 S.J.Park;W.B.Park;J.R.Lee https://doi.org/10.1295/polymj.31.28
  27. Carbohydrate Polym. v.45 G.Yilmaz;R.O.J.Jongboom;H.Feil;W.E.Hennink
  28. J. Kor. Soc. Dyers & Finishers v.8 K.J.Hong;S.M.Park
  29. J. Colloid Interf. Sci. v.236 S.J.Park;J.S.Kim https://doi.org/10.1006/jcis.2000.7380