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ESTIMATION OF SCALE PARAMETER AND P(Y < X)
FROM RAYLEIGH DISTRIBUTION

CHANSOO KiM! AND YOuNsHIK CHUNG?

ABSTRACT

We consider the estimation problem for the scale parameter of the
Rayleigh distribution using weighted balanced loss function (WBLF) which
reflects both goodness of fit and precision. Under WBLF, we obtain the op-
timal estimator which creates a kind of balance between Bayesian and non-
Bayesian estimation. We also deal with the estimation of R = P(Y < X)
when Y and X are two independent but not identically distributed Rayleigh
distribution under squared error loss function.

AMS 2000 subject classifications. Primary 62C10; Secondary 62C12.
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1. INTRODUCTION

The Rayleigh distribution is well known as an important model in reliability
model. Then the probability density function, conditional on parameter 6, is
given by

2 .22
f(alf) = gwe™® /9%, (1.1)

For a situation where failure rate is linear and an increasing function of time, the
Rayleigh distribution which is a special case of Weibull family would be an ideal
choice.

In this paper, estimation procedure for the scale parameter 6 using a weighted
balanced loss function (WBLF) is considered. The WBLF is an extension of the
balanced loss function (BLF) for a scalar mean introduced by Zellner (1994) which
reflects both goodness of fit and precision of the estimator of . Use of a goodness
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of fit criterion such as the sum of squared residuals in a regression problems leads
to an estimator which gives good fit and is unbiased. However, as commented
by Zellner (1994), it may not be as precise as an unbiased estimator. Thus,
there is a need to provide a framework which combines the goodness of fit and
precision of estimation formally. For the problem of estimating the mean vector of
a multivariate normal distribution, Chung and Kim (1997) showed that the usual
estimator X is admissible when p < 2 and otherwise it is inadmissible. Chung
et al. (1999) also obtained a new class of minimax estimators of multivariate
normal means under BLF.

Rodrigues and Zellner (1994) discussed a WBLF for estimation of exponential
mean time to failure 8. The WBLF was defined as follows:

wzyzl(xi - Eé(X))2
nVar;(X)

(-9
Varé (X)

Lp(6,6) = + (1 —w)

(1.2)
for some 0 < w < 1, where @ is an estimator of 8. If Vary(X) = 1 and E4(X) = 6,
we obtain the BLF introduced by Zellner (1994). The first term on the right hand
side of (1.2) assesses goodness of fit while the second term represents precision of
estimation.

We also deal with the problem of estimating R = P(Y < X) using Lindley’s
approximation when Y and X are independent but not identically distributed ac-
cording to a Rayleigh distribution. Assume that X is the strength of a component
which is subject to a stress Y. This problem arises in the context of mechanical
reliability of a system and P(Y < X)) is a chosen measure of system performance.
The system fails if and only if at any time the applied stress is greater than its
strength. Related problems have been widely presented in the literature. Church
and Harris (1970) derived the maximum likelihood estimate for R = P(Y < X))
in the normal case. Enis and Geisser (1971) suggested a Bayesian approach for
estimating R. Weerahandi and Johnson (1992) considered a Bayesian analysis in
a stress strength model when X and Y are normally distributed.

Let X=(X,,...,X,) be arandom sample from the Rayleigh distribution with
the probability density function (1.1). Then the likelihood function of 6 on X is

given by
22
L(§|X) = 92n (H $l> exp < 21921 ) ) (1.3)

where E(X) = 0/7/2 and Var(X) = 6%(1 — n/4). A non-informative prior for 8
is used in our estimation problem.
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In Section 2, an optimal estimator relative to WBLF is derived and it will
be seen that Bayesian and non-Bayesian estimators are dominated in terms of
WBLF by the optimal estimator relative to WBLF.

In Section 3, we consider the problem of estimating R = P(Y < X) under
squared error loss function (SEL). The maximum likelihood and Bayes estima-
tors are derived. In Monte Carlo simulation, we compare the MLE and Bayes
estimators in terms of the estimated risks.

2. ESTIMATION OF SCALE PARAMETER RELATIVE TO WBLF

Let X=(Xj,...,X,) be a random sample from a Rayleigh distribution with
pdf f(z|0) given (1.1). From (1.1), we have E4(X) = 6v/7/2 and Varg(X) =
62(1 — w/4). The WBLF in (1.2) can be re-expressed as

A w S (x; — 07 /2)2
Ls(6,6) = %_21:(1; 2 W/%; /2)

(9 - 9)*
(1—7/4)82

+ (1 —w)

We will show how sensitive estimation results are to the choice of the value of w.
Usually, w = 0 or w = 1 is employed.

Let 6* be the optimal Bayes estimator of #. It minimizes the posterior ex-
pected weighted balance loss, that is

E{Lp(6",0)|X} = min E{Lp(6,6)X}. (2.2)
0
The following theorem gives the optimal estimator and the minimal posterior
expected loss.

THEOREM 2.1. Under the model (1.1) and for any posterior, n(0|z), we have

e wXél +(1 - w)égé
&) O = art A= w) 2:3)

(b) E{Lp(6",6)|X} = %;—/_4”&
__ 1 wZ/m/2+ (1 —w)f
1-— 7'(/4 { é* } ’ (24)

where 0 = S?/X + X, §? = 31 (X; — X)?/n, 0, = E(0%|X)/0 and 8 denotes

a posterior mean.
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PROOF. Using the posterior probability function for 8, the posterior expected

loss is ) ) Y ) )
X Oym/2 - X 1—w)(@—6
Ly(,60) = wS* +w(fyn/ )"+ (1 —w)(®—6)" 25)
(1-m/4)62
Solving the equation 8{ELg(f,6)}/88 = 0 for 0, the result (2.3) will be obtained.
The second part of theorem is followed trivially from (2.3) and (2.5). O

Since the usual non-informative prior for 4 is proportional to 1/6, the posterior
distribution, its mean and 65 are given by respectively

o3 (1) ().

5 L(n—1/2)
b= T'(n) 51

and I )
- I'(n— l/ﬁsl’

where $2 = 37 | X2,
Using Theorem 2.1, we have the optimal estimator 6* and the minimal pos-
terior expected loss as follows:

6" = =07 + (1-%)63, (2.6)
and
B{Lo (", 0)X} =~ T
1 w7 I'(n—-1/2) 5"
1—71'/4{ I i v 32‘}
w n — 2y L
x{m+(1_w)—r(r(n)l)%} ) (2.7)
where
) -1
G =20 Gy=0, m- Ayl
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It is obvious from (2.6) that 6* is a combined estimator of non-Bayesian and
Bayesian estimators when w = 1 and w = 0 respectively. If w = 1 in (2.6),
* = 07 =20, //7 while if w = 0, 6* = 03 = 0.

It is of interest to compare (2.7) with the posterior expected losses associated
with é{ and 6. The difference between the posterior expected losses correspond-
ing to 6% and g* is

A = E{Lp(},0)X} - E{L5(0",0)|X}

1 wy/T T(n—1/2) 5>
—1—7r/4{ - - T(n) ?}
w I'(n-—1) 8% - N ?
SESLL o d (1‘ zal>
~ 2
I PR, _ﬁ92 wy/m ?
=-(1-%) (1 0 ) (22> : (2.8)

where
s (- P{ o

From (2.8), it is seen that the inflation of the posterior expected loss associated
with use of ] depends on n, w and 6; /6. It is similar to the case of 65. Further,

A __wpp(BE)
B{isiox) 7 (55 (2.9

-2 (s 5]
20, 1—m/4 2% )
For the given data X = (4.2995,2.0688,0.9556, 1.6097,1.2221), (2.9) is equal to
2.75% when w = 1/2. That is, under these conditions, the expected loss is
inflated by 2.75% if one uses 0} instead of the optimal estimate 6* given in (2.6).
Also, when Z2 =0, éi‘ = é; = 6* and if w = 1, é{ = §*. Thus the relative loss is
equal to zero. It is also the case with é;

where

3. STRESS-STRENGTH MODEL UNDER NONINFORMATIVE PRIOR

Let X be a random variable whose pdf is a Rayleigh distribution with param-
eter § and Y has another Rayleigh distribution with parameter ¢ where X and
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Y are independent. We can see that
2

(3.1)

3.1. Mazimum likelihood estimation of R
Let X = (X1,...,X,) be a random sample of size of n drawn from a Rayleigh
distribution with parameter . From (1.3), the log-likelihood function is
SQ
1(0]x) o< —2nlog 6 — 9—;,

where S? = Y7 | X2. The maximum likelihood estimate (MLE) of 8 is obtained
as in the following form:

A sz
Op =14/ .
n
IfY = (Y1,...,Ys) is a random sample of size of m from a Rayleigh distribution
with parameter ¢, the MLE of ¢ is
: S2
¢)M = '—Q'a
m

where S = S, Y2 Therefore, the MLE of R can be obtained as in the

following form:

R 0%,

RM — A= .
o~ i

(3.2)

3.2. Bayes estimation of R

To obtain the joint posterior distribution of (8, ¢) given data, we need prior
distributions of (0, $). Here, we use a Jeffreys’s prior, i.e. 7(8,¢) x 1/0¢. A
squared error loss (SEL) function is used. By using the likelihood function and
Jeffreys’s prior, we can obtain the joint posterior density of (6, ¢) given x and y
in the form of

482n g2m 1 2n+1 1 2m+1 2 52
0o =ty () (3) el (RrE)) 09
where x = (z1,...,Z,) and y = (Y1, .-, Ym)-

After the usual transformations of random variables, the posterior density
function of R is
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m(rlx,y)

_ T(n + m)SinSom 1 ntl s\ ml i
= T'(n)['(m) {S%/T + S%/(l _ T)}n—Hn (,r) <1 — 7_) ,0<r<1. (34)

Under the SEL, the Bayes estimate of R is the posterior expected value of
R. This expected value contains an integral which is usually not obtainable in
a simple form. We use Lindley’s (1980) approximation to compute the Bayes
estimate of R.

Lindley (1980) developed approximation procedures for the evaluation of the
ratio of the two integrals in the form

Jo W (8)eloe L dp
Jo m(B)els LO)dg ’

(3.5)

where L(6) is the likelihood function, W (6) and 7(8) are arbitrary functions of
6. Suppose that 7(6) is the prior density of § and W (6) = G(0)n(6). From (3.5),

£20)
po = LT

which is the Bayes estimator of G(6) under SEL where Q(8) = log L(8) + log 7(8)
is the logarithm of the posterior distribution of § except the normalizing constant.

(3.6)

Lindley (1980) estimated both integrals by expanding terms about 6, posterior
mode, obtaining an asymptotically second-order approximation. This methods
requires third derivatives or derivative-free techniques.

Let 8; = 0 and 6, = ¢. For the two parameter case § = (6;,62), Lindley’s
approximation leads to

Gp = E{G(61,62)|x,y}
2 2
1 0%G 8Q [ 0G oG
= G(61,02) + —2"{ g]z: 56.06, 7 + 57, (56-7“ + 6—92712) 11
0

3 oG oG
) (3—T11712 + (11722 + 27122)>

* 520,00, \° 50, 0,
PQ (.06 8G ,
gy (S g a4 )

92Q [ 0G oG
+ 83—92— (6—02722 + 8—91721> 7’22}, (3.7)
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where 7;; is the (4, )" element in the inverse of the matrix Q* = —82Q/06,00;,
iJ=1,2.
In our case, @ is given by
5t _ 5

Qx—(2n+1)logf — (2m + 1)log¢ — e

The joint posterior mode, denoted by (9, gz~S), is given by

St
n+1/2

53

0= :
m+1/2

and ¢ =

For G(61,60:) = G(0, $) = 6/(6* + ¢?) and after some calculations,

94 ¢4
= — = — = =0
m I+ )2 —652 2T (@mrl)gt-652 2T AT
1 2

BQ  —202(2n+1)+2457  Q  —24°(2m +1) + 2453
903 05 Y 5 ’
*Q _ &Q _,
896204 00042

G 2¢%0 G 242 (¢* — 36°)
80 (02+¢2)2° 0000 (62 + ¢2)3
G  —2¢6> 82G  20°(34° - 62)
0p (P + D)2 0o (67 +¢7)°

Therefore, substituting the above values in (3.7), the Bayes estimate of R is given

R - (1
1+4n+2(6 )(R 1)

SN T S

where R is evaluated at (5, é), the posterior mode.

To compare the MLE and the Bayes estimator of R, we compute the risk
functions using Monte Carlo simulation. Let W be an exponential distribution
with parameter § and X = vW. Then, X has a Rayleigh distribution with
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TABLE 1 Estimated risks of the MLE and the Bayes estimators of R for different sample sizes
(n, m) based on 1,000 repetitions

(n,m) Risknrz Riskp

(10,10) | 1.9664778E-03 | 1.5179471E-03
(20,20) | 9.8955561E-04 | 8.5120852E-04
(40,40) | 4.3916699E-04 | 4.0648167E-04
(60,60) | 2.8177138E-04 | 2.6663390E-04

parameter §. We can generate X and Y from Rayleigh distributions with pa-
rameter 8 and ¢, respectively. The risks under SEL of the two estimators were
estimated by

K
— 1 . )
Risk = e kg—l(R - R)%,

where K is a number of replication.

The estimated risks of these estimators are given in Table 1 for different
sample sizes n and m. Generally, the estimated risk of the Bayes estimator of R
is the smallest. Also, it is seen that the estimated risks of the two estimators are
decreasing when (n,m) are increasing.
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