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BAYESIAN TEST FOR THE EQUALITY OF THE MEANS
AND VARIANCES OF THE TWO NORMAL
POPULATIONS WITH VARIANCES RELATED TO THE
MEANS USING NONINFORMATIVE PRIORS

DAL Ho KiM! Sance GiL KanGg? AND Woo DoNG LEE3

ABSTRACT

In this paper, when the variance of the normal distribution is related
to the mean, we develop noninformative priors such as matching priors and
reference priors. We prove that the second order matching prior matches
alternative coverage probabilities up to the same order and also it is a HPD
matching prior. It turns out that one-at-a-time reference prior satisfies a
second order matching criterion. Then using these noninformative priors,
we develop a Bayesian test procedure for the equality of the means and
variances of two independent normal distributions using fractional Bayes
factor. Some simulation study is performed, and a real data example is also
provided.

AMS 2000 subject classifications. Primary 62F15; Secondary 62G10.
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1. INTRODUCTION

Suppose that the observations are normally distributed with mean p and
variance (¢ + p)Fo?. That is,
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where ¢ + > 0. Here the constant ¢ (commonly 1 or 0) and the exponent k are
known. Let 8; = ¢+ p be the parameter of interest.

The present paper focuses on noninformative priors for §; and a Bayesian test
procedure for the equality of the means and variances of two normal populations.
We consider Bayesian priors such that the resulting credible intervals for 8; have
coverage probabilities equivalent to their frequentist counterparts. Although this
matching can be justified only asymptotically, our simulation results indicate that
this is indeed achieved for small or moderase sample sizes as well.

This matching idea goes back to Welch and Peers (1963). Interest in such
priors revived with the work of Stein (1985) and Tibshirani (1989). Among
others, we may cite the work of Mukerjee and Dey (1993), DiCiccio and Stern
(1994), Datta and Ghosh (1995), Datta and Ghosh (1995, 1996), Mukerjee and
Ghosh (1997) and Mukerjee and Reid (1999).

On the other hand, Ghosh and Mukerjee (1992}, and Berger and Bernardo
(1989, 1992) extended Bernardo’s (1979) reference prior approach, giving a gen-
eral algorithm to derive a reference prior by splitting the parameters into several
groups according to their order of inferential importance. This approach is very
successful in various practical problems. Quite often reference priors satisfy the
matching criterion described earlier.

Variance proportional to mean situations are indicated whenever coefficients
of variation are approximately constant, as referenced for human stature, for
example, in Snedecor and Cochran (1980) and apparent in the pheasant weight
data in Steel and Torrie (1980). A nonbiological example is the experimentally
determined result (Cox and Roseberry, 1966), that the variance of the average
number in sequential probability ratio tests increases with the squre of the average
sample number. When the observations are normally distributed with variances
that are related to the means, Cox (1985) gave the procedure for estimating the
ratio of the means of two populations. The other estimating procedures for the
ratio of the means, for example Fieller (1944) and Elston (1969), are not used
relationship of the variance and the mean. Cox (1985) showed that his procedure
produced the shorter confidence length than the other classical procedures. But
his method is required to determine circumstances giving real roots for £ > 2 in
model (1.1).

Almost all the work mentioned above is the analysis based on the frequentist
point of view, but we consider this problem from the viewpoint of Bayesian
framework. There seems to be a necessity to develop objective Bayesian priors
for dealing this problem. And we want to develop the Bayesian test procedure for
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testing the equality of two independent normal populations using Bayes factor.
We calculate the posterior probabilities of the hypotheses using the fractional
Bayes factor of O’Hagan (1995) based on noninformative priors.

The outline of the remaining sections is as follows. In Section 2, we develop
first order and second order probability matching priors for §;. We reveal that
the second order matching prior matches the alternative coverage probabilities
up to the same order and is also a HPD matching prior up to the same order.
Also we derive the reference priors for the parameters. It turns out that the one-
at-a-time reference prior satisfies a second order matching criterion. We provide
the propriety of the posterior distribution for a general class of prior distributions
which includes the reference priors as well as second order matching priors. In
Section 3, using the developed prior, we provide the Bayesian test procedure
based on the fractional Bayes factor for the testing ratio of the means of two
populations. In Section 4, simulated frequentist coverage probabilities under the
proposed priors are investigated. A real example is also given.

2. THE NONINFORMATIVE PRIORS

2.1. The probability matching priors

For a prior , let 8;*(x; X) denote the (1 — a)®* percentile of the posterior
distribution of 6y, that is,

P™ {6 <0/ *(mX)|X} =1-aq, (2.1)
where 8 = (01,...,6;)T and 6, is the parameter of interest. We want to find
priors w for which

P{6, <67 *(m;X)|0} =1—a+o(n™¥), (2.2)

for some u > 0, as n goes to infinity. Priors 7 satisfying (2.2) are called matching
priors. If u = 1/2, then = is referred to as a first order matching prior, while if
u = 1, 7 is referred to as a second order matching prior.

In order to find such matching priors =, it is convenient to introduce orthog-
onal parametrization (Cox and Reid, 1987; Tibshirani, 1989). To this end, let

0L =c+p, Oy=c%(c+pr.

With this parametrization, the likelihood function of parameters (6;,63) for the
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model (1.1) is given by

_ 2
10,0 ey {50

Based on (2.3), the Fisher information matrix is given by

61 0
2

For notational convenience, we denote I™! = (I%).

From the above Fisher information matrix I, 8, is orthogonal to 5 in the
sense of Cox and Reid (1987). Following Tibshirani (1989), the class of first
order probability matching prior for 8; is characterized by

71 (61,0) o< 05 /2d(6), (2.4)

where d(63) is an arbitrary positive function differentiable in its arguments. The
class of prior given in (2.4) can be narrowed down to the second order probability
matching priors as given in Mukerjee and Ghosh (1997).

THEOREM 2.1. The second order probobility matching priors for 61 are given

by
2 (61,62) = 67" (2.5)
PROOF. A second order probability matching prior is of the form (2.4), and

also d must satisfy an additional differential equation (cf. (2.10)) of Mukerjee and
Ghosh (1997), namely

1 d (. _3p 0 (.12
gd(eg)a—gl {Ill / Ll,l,l} + 8—0; {.[11 / L112I22d(02)} = 0, (26)
where
3
Ln=65), 122=202, Ly, —5{28L1"_
- 06,
& logL
Lip = = 6,2
1z E{ 86206, } 2
Then (2.6) simplifies to
0 1/2 _
2, {292 d(02)} ~ 0. (2.7)
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Hence the set of solution of (2.7) is of the form d(62) = 92_1/2. Thus the resulting
second order probability matching prior is

72 (6,,0,) = 651,

This completes the proof. 0

2.2. The probability matching priors : Matching the alternative coverage
probabilities

Mukerjee and Reid (1999) studied that a prior satisfying (2.2) matches P{6; +
B(I'' /n)1/? < 6]7*(;X)|@} with the corresponding posterior probability, up to
the same order and for each 8 and «, where the scalar (3 is free from n, 0 and X.
If a matching prior matches the alternative coverage probabilities then there is
a stronger justification for calling it noninformative in so far as agreement with
a frequentist is concerned. In general, a second order matching prior may or
may not match the alternative coverage probabilities up to the same order of
approximation.

Under orthogonal parametrization, Mukerjee and Reid (1999) gives the simple
differential equations that a second order probability matching prior matches al-
ternative coverage probabilities up to the second order. The differential equations
are given by

t ot
0 o
Z Z —87 {Llle”1—111/2d(827 - 70t)} = Oa (28)
i=2 j=2 ¢
t.tog 3
>0 5 {Lj,uf”fﬁl/zd(@z, e ,0t)} =0, (2.9)
i=2 j=2 ¢
—3/2 0 —3/2
8_GI {I]-l / Llll} = 0, 59—1 {Ill / Ll,ll} = 07 (2.10)

where

dlogL &%logL , T
L1y = . =1,....t, 8=(0,,...
7,11 E{ 89] 80% y J 17 by 6 (017 76t)

and #; is the parameter of interest.

THEOREM 2.2. The second order probability matching prior for 61,

ﬂ-g) (01702) = 02_17 (211)
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matches the alternative coverage probabilitics up to the second order.

PROOF. Due to the orthogonality of 8; with 6,, the differential equations are

given by
9 {1 @) ; =0,
Bg, L1112 2) ]
0
5 {Lan 12 d(og)} =0,
0 (.32 ~3/2 _
N {I Lm} =0, = {I Ll,u} =0.
Since
d(6) = 6; % Iy =65, I?? =263,
L1 =0, Lia=05% Li11=0, Lyp =0,
we obtain
0 _
5 {652-26% -0 6,7/} =0,
'3872 {0263 -01/.07"/2) =,
0 03/2 . 3/2
3_91{ 0} =0, -—{9 0} =0.
Hence the second order matching prior matches the alternative coverage proba-
bilities up to the second order. This completes the proof. O

2.3. HPD matching priors

There are alternative ways through which matching can be accomplished. One
such approach (DiCiccio and Stern, 1994; Ghosh and Mukerjee, 1995) is matching
through the HPD region. Specifically, if # denotes the posterior distribution of
01 under a prior 7, and k, = kq(7; X) is such that

P {#(01]X) > kalX} =1 — a + o(n™), (2.12)

then the HPD region for 8; with posterior coverage probability 1 — o+ o(n™%) is
given by

Hq(m; X) = {01)7(61]X) > Ko} (2.13)
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DiCiccio and Stern (1994) and Ghosh and Murkerjee (1995) characterized priors
7 for which

P{0, € Hy(m;X)|0} =1 —a+ o(n™"), (2.14)

for all 8 and all o € (0,1). They found necessary and sufficient conditions under
which 7 satisfies (2.14). Due to the orthogonality of 8; with 6, from equation
(33) of DiCiccio and Stern (1994) or equation (4.1) of Ghosh and Mukerjee (1995),
a prior 7 is a HPD matching prior if and only if it satisfies

82 11 6 11,2 8 22 r11 .
59—%{-’ T} — a—el{Lm(I )i} — 8_92{L112I Mrl=o0. (2.15)

Datta et al. (2000) provided a theorem which establishes the equivalence
of second order matching priors and HPD matching priors within the class of
first order matching priors. The equivalence condition is that Iﬁ?’/ 2L111 dose not

depend on 6;. Since L1;; = 0, the second order probability matching prior for
ela

72 (61,6,) = 657, (2.16)

is a HPD matching prior up to the same order.

2.4. The reference priors

In this section, we derive the reference priors for different groups of ordering
of (61,62). Due to the orthogonality of the parameters, by following Datta and
Ghosh (1995) and choosing rectangular compacts for each #; and 6, the reference
priors are obtained as follows.

THEOREM 2.3. If 6y or 62 is the parameter of interest, then the reference
prior distributions for different groups of ordering of (61,02) are:

Group ordering Reference prior
{(61,02)) mf(61,65) o< 0,77
{91,92},{62,91} 71'5(91,92) 0(92—1

REMARK 1. One-at-a-time reference prior 74 is a second order matching

prior as well as a HPD matching prior, and matches the alternative coverage
probabilities up to the second order.
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2.5. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which
include the reference priors and the second order matching prior. Consider the
class of priors

7T(91,92) 0(92—117 (2.17)

where ¢ > 0. Using the general priors (2.17), we will prove the propriety of
posterior distribution in the following theorem.

THEOREM 2.4. The posterior distribution of (01,62) under the prior (2.17)
1s proper if n+ 2a — 3 > 0.

PrOOF. Note that the joint posterior for §; and 6, given x is

n

—n/2—q 1
(61, 62]x) o 6, /2 exp{ ~ %, Z(Il -6, + c)2}. (2.18)
i=1

First, we integrate with respect to 6, the right hand side of (2.18). If n+2a—2 > 0,
then

n —~(n+2a—2)/2
7(01|x) { Z(‘T’ —-6; + 0)2} )
i=1
Thus if n 4+ 2a — 3 > 0, then
o0
/ 7!'(91|X)d91
0
00 n —(n+2a-2)/2
:/ {Z(mi—91+0)2} d91
0 i=1
n —(n+2a-2)/2 (oo (w— 1_:)2 —{(n+2a-2)/2
< T — 5)2} / {1 + o } dw
{ ;( —0 Di=1(zi — 2)%/n
< 0.
This completes the proof. O

THEOREM 2.5. Under the prior (2.17), the marginal posterior density of 6,
is given by

n —(n+2a-2)/2
} . (2.19)

m(01|x) { Z(x, -6+ 0)2

i=1
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The normalizing constant for the marginal density of 6, requires a one di-
mensional integration. Therefore we have the marginal posterior density of 6,
and so it is easy to compute the marginal moment of 6,. For reference prior, 7y,
a = 3/2 in the above marginal density (2.19). For w2, a = 1. In Section 4, we
investigate the frequentist coverage probabilities for the m; and mg respectively.

3. BAYESIAN TEST USING FRACTIONAL BAYES FACTOR

3.1. Preliminaries

Models (or Hypotheses), Hi, Ho,...,H, are under consideration, with the
data x = (z1,22,...,Z,) having probability density function f;(x|0;) under
model H;, 1 = 1,2,...,q. The parameter vectors @; are unknown. Let m;(8;)
be the prior distribution of model H;, and let p; be the prior probabilities of
model H;, 1 = 1,2,...,q. Then the posterior probability that the model H; is

true is .
P(Hjlx) = {Zp’ } , (3.1)

where Bj; is the Bayes factor of model H; to model H; defined by

mix) _ [ £5(x18,)m;(8,)d8,
mz(x ffz ?{lez)“z( :)d0;

The Bj; is interpreted as the comparative support of the data for the model j
to i. The computation of Bj; needs specification of the prior distribution ;(8;)

Bji = (3.2)

and 7;(6;). Usually, one can use the noninformative prior, often improper, such
as uniform, Jeffreys, reference or probability matching priors. Denote it as 7).
The use of improper priors 7; N() in (3.2) causes the Bj; to contain unspecified
constants. To solve this problem, O’Hagan (1995) proposed the fractional Bayes
factor for Bayesian testing and model selection problem as follow.

When the 7Y (8;) is noninformative prior under H;, equation (3.2) becomes

BN( ) ffj(x|0J)7r;V(03)d9] (3 3)
Then the fraction Bayes factor (FBF) of model H; vs. model H; is
r_ 4(0:x) (3.4)

7 gi(b,x)’
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where

. [ fi(x16:)7 ) (6,)d8;
albx) = [ 12 (x16:)7 Y (8:)d6;’

and f;(x|@;) is the likelihood function and & specifies a fraction of the likelihood
which is to be used as a prior density. He proposed three ways for the choice of
the fraction b. One frequently suggested choice is b = m/n, where m is the size
of the minimal training sample, assuming this is well defined (see O’'Hagan, 1995
and the discussion by Berger and Mortera of O’Hagan, 1995).

3.2. Bayesian test

Suppose that X = (X;,X5) is a set of independent random sample, where
Xi = (Xi1,...,Xin;) i1s a sample from a normal distribution with mean p; and
variance (¢ + p;)¥02, ¢+ p; > 0,4 = 1,2. Here the constant ¢ and the exponent
k are known. We want to test the hypotheses

¢t =1 wvs. szc—i—ul

Hy :
! c+ po2 C -+ po

£1.

The hypothesis H; indicates the equal mean. Our interest is to develop a Bayesian
test for Hy vs. Hy which is an alternative to the classical tests.

Under the hypothesis H;, one-at-a-time reference prior for u(= p; = p2) and

o?is

1
71'1([L,UQ) = ;57 02 > 0.
And the likelihood function is
) 1 (n1+n2)/2 1 2 n; )
L e - - i — ]
) Agrma) o mera )

Then the element of FBF under H; is given by
oo o0
/ / LY (p, 0 [x)m1 (1, 0% dpudo™
0 —c

cor 2 M —b(ni1+nz)/2
= (wb)_b(”1+”2)/2f‘(w)/ {Z > (w +c—91)2} db,,
0

2 — £
=1 j=1
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where 6, = ¢+ p and 65 = (c + u)*o?. Let

o) 2 —(n1+n2)/2
S'(x) =/ {Zz(xij+c—91)2} dfq,
0 i=1 j=1
2 —b(n1+n3)/2
/ {ZZ&;”+C—91 } .
i=1 j=1

Then
q(b,x) = {ﬂ“(m-i-nz)/?]_“(ﬂ___g_@)su-)}

—1
X{ﬂ_—b(nl—}-nz)ﬂ b-—b(n1+n2)/2r<b(n;;’r_l'2_)) Sb(q;)} . (35)

For the Hs, the independent one-at-a-time reference prior for (i1, ug,0?) for
the two-sample case is

1\2
o1, p2, o) = (;) , o >0.
The likelihood function is

L([.Ll,/,L270'2|X)
/2 1 Zm
=1{92 + k. 217—™ S A 2
{ W(C :u’l) o } eXp 2(C+/le)k0'2 j:1(mlj :u‘l)

k 2\ —7n2/2 1 & 2
X{27r(6+/.L2) o } 2 exp{—m;(:vgj—ug) }

Let vy = ¢+ p1 and v = ¢ + uo. Then the element of FBF under H, gives as
follows:

o o0 x0
/ / / Lb(u1, pa, o|x)ma (1, p2, 0°)dp1 dpado®
0 —c J—c¢
— 9, =b(ni+n2)/2 p=1-b(n1+n2)/2 T (bﬁh-+n2-+2>./‘ /" yron 2, bena/2

T1; +c—vy)? Toj +c— 1o 1=b(n1+n2)/
X{Z] 1( d 1) +Z ( d )} dvldljz

k k
b vy

/ / —kn1/2 —knz/?

Dgai(Ty +e— V1)2 "2 (z9; + ¢ — 19)? ~(n1+n2+2)/2
X{ S k +ZJ_1( - 2 ) } dvidvy,
2 :

Put

vy
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%
vy

Y : ™M (z1; +c—11)?

Tb(x) = / / I/l_bl"nl/QV;kaLQ/Q{Z]_l( J 1)
0 0
n

12 . _ 2~ —1—b(n1+n2)/2

‘ilx9i+Cc—1ny

Z]"l( d - ) y diidys.
vk J

Then

—1
ot it snapap (AR IR £ Y L

Therefore the FBF of H, vs. Hj is given by

T(x)5%(x)
T*(x)S(x)’

Bf (x) = (3.7)

4. NUMERICAL STUDIES

4.1. Simulation study

We evaluate the frequentist coverage probability by investigating the credible
interval of the marginal posterior density cf 8; under the reference priors given
in Theorem 2.3 for several configurations n, c, k, 02, 1 and uo.

That is to say, the frequentist coverage of a (1 — )™ posterior quantile should
be close to 1 — a. This is done numerically. Table 4.1 gives numerical values of
the frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for the
our prior. The computation of these numerical values is based on the following
algorithm for any fixed true (61,602) and any prespecified probability value a.
Here « is 0.05 (0.95). Let 6§ (n|X) be the posterior a-quantile of #; given X.
That is, F(6¢(m|X)|X) = o, where F(:|X) is the marginal posterior distribution
of 8. Then the frequentist coverage probability of this one sided credible interval
of 01 is

P((,)1 ,92)((1; 91) = P(gl,gz){() < 01 < 0(11(7T]X)} (4.1)

The estimated P, g,)(c;61) when o = 0.05 (0.95) is shown in Table 4.1. In
particular, for fixed n and (y,62), we take 10,000 independent random samples
of X from the normal population. In our simulation, we take 02 = 1 without loss
of generality. Note that under the prior 7, for fixed X, 6; < 6¢(w|X) if and only
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TABLE 4.1 Frequentist coverage probability of 0.05 (0.95) posterior quantiles of 61

01

o

R
LP)

10

0.1078(0.9269)
0.1002(0.9340)
0.0995(0.9327)
0.1124(0.9290)
0.1023(0.9061)
0.0976(0.9043)
0.1049(0.9238)
0.1036(0.9308)
0.0992(0.9007)
0.1114(0.9067)
0.1039(0.9285)
0.1087(0.9278)
0.0987(0.9091

0.0980(0.8994

0.1087(0.9307

0.0658(0.9699)
0.0616(0.9744)
0.0594(0.9710)
0.0698(0.9727)
0.0584(0.9558)
0.0547(0.9526)
0.0663(0.9680)
0.0599(0.9715)
0.0569(0.9484)
0.0629(0.9511)
0.0653(0.9716)
0.0680(0.9681)
0.0517(0.9550

0.0550(0.9505

0.0657(0.9704

10

)
)
0.1053(0.9320)
)
)

0.0734(0.9395

0.0769(0.9401)
0.0770(0.9413)
0.0771(0.9378)
0.0734(0.9246)
0.0706(0.9301)
0.0705(0.9394)
0.0742(0.9395)
0.0751(0.9261)
0.0703(0.9280)
0.0717(0.9402)
0.0780(0.9409)
0.0772(0.9245)
0.0697(0.9263)
0.0704(0.9359)
0.0760(0.9428)

)
)
0.0625(0.9690)
)
)

0.0504(0.9617

0.0548(0.9627)
0.0553(0.9648)
0.0543(0.9611)
0.0523(0.9495)
0.0486(0.9532)
0.0489(0.9615)
0.0523(0.9613)
0.0491(0.9495)
0.0482(0.9506)
0.0516(0.9620)
0.0560(0.9633)
0.0516(0.9491)
0.0486(0.9478)
0.0500(0.9605)
0.0555(0.9643)

10

—_ O ke DO - O - OO RO RO R OO RO RO OO RO RO ROEORRE OO~ OoOI0

0.0597(0.9452)
0.0620(0.9459)
0.0584(0.9447)
0.0604(0.9436)
0.0634(0.9427)
0.0613(0.9440)
0.0598(0.9409)
0.0595(0.9446)

0.0501(0.9543)
0.0515(0.9550)
0.0486(0.9563)
0.0499(0.9543)
0.0532(0.9526)
0.0502(0.9531)
0.0501(0.9518)
0.0504(0.9550)

(continued)

283
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TABLE 4.1 Frequentist coverage probability of 0.05 (0.95) posterior quantiles of 61 (continued)

DAL Ho KIM et al.

n 6 c R ol
10 5 0 | 0.0630(0.9391) 0.0513(0.9491)
1 | 0.0600(0.9440) 0.0514(0.9533)
0 | 0.0626(0.0415)  0.0524(0.9518)
1| 0.0602(0.9431) 0.0506(0.9528)
10 0 | 0.0593(0.9393) 0.0488(0.9494)
1 | 0.0601(0.9350) 0.0507(0.9468)
0 | 0.0576(0.9411)  0.0479(0.9521)
1

0.0601(0.9460)

0.0500(0.9557)

if F(0¢(n|X)|X) < a. Under the prior 7, Py, ,)(c; 01) can be estimated by the
relative frequency of F(6¢]X) < a.

In Table 4.1, we can observe that one-at-a-time reference prior ﬂf meets very
well the target coverage probabilities. Also note that the results of tables are not
much sensitive to the change of the values of (61,62). Thus we recommend to use
the one-at-a-time reference prior in our situation.

For the hypetheses

¢+
¢+ p2

leipﬂ:l vs. Hy:
c+ uz

# 1,

we want to compare the classical F-test (Cox, 1985) with Bayesian test using
the one-at-a-time reference prior based on p-values and posterior probabilities
of H;. We evaluate the p-values and posterior probabilities of H; for several
configurations n, ¢, k, 02, p; and ug. The p-values are computed based on
F-test (Cox, 1985) with 1 and nj + no degrees of freedom. The Bayes factors
and the posterior probabilities of H; being true are computed assuming equal
prior probabilities. The numerical values of P-values, Bayes factors and posterior
probabilities are given in Table 4.2.

From Table 4.2, when (u1, u2) = (1,2) and (u1, u2) = (1,3), the Bayes factors
select H, properly, but the p-values do not choose Hy for some cases. Actually
for this case, as the sample sizes become larger, the p-values will select Hz. The
both p-values and Bayes factors support H; for the case of (u1, u2) = (1,1). Thus
the Bayesian testing procedure gives fairly reasonable answers.
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TABLE 4.2 Bayes fators and posterior probabilities for testing H1 : (c+ p1)/(c+ p2) =1 vs.
Hy: (c+ p1)/(c+p2) # 1

m p2 k¢ my ng | Bayes factor Posterior probability p-value
1 1 1 0 5 5 0.5742 0.6352 0.7392
10 10 0.4529 0.6883 0.4856

20 20 0.3163 0.7597 0.6970

30 30 0.1727 0.8527 0.7871

1 5 5 0.6220 0.6165 0.8843
10 10 0.4850 0.6734 0.5824

20 20 0.3443 0.7439 0.6565

30 30 0.2669 0.7894 0.9257

2 0 5 5 0.3082 0.7644 0.7057
10 10 0.1656 0.8579 0.4675

20 20 0.0757 0.9296 0.7908

30 30 0.0606 0.9429 0.6698

1 5 5 0.4756 0.6777 0.7705
10 10 0.2731 0.7855 0.9946

20 20 0.1729 0.8526 0.9549

30 30 0.0809 0.9251 0.6563

1 2 1 0 5 5 2.5611 0.2808 0.3545
10 10 5.4849 0.1542 0.1300

20 20 32.3203 0.0300 0.0023

30 30 326.1383 0.0031 0.0053

1 5 5 0.9317 0.5177 0.4563
10 10 2.9585 0.2526 0.1034

20 20 11.3815 0.0808 0.0150

30 30 151.5732 0.0066 0.0062

2 0 5 5 0.7220 0.5807 0.4467
10 10 3.1379 0.2417 0.1842

20 20 15.0477 0.0623 0.0903

30 30 262.5194 0.0038 0.0218

1 5 5 0.7784 0.5623 0.3570
10 10 0.8126 0.5517 0.2398

20 20 1.8484 0.3511 0.2097

30 30 2.8366 0.2606 0.0815

50 50 240.8619 0.0041 0.0392

1 3 1 0 5 5 3.3030 0.2324 0.0294
10 10 168.9921 0.0059 0.0009

20 20 | 389600.7181 0.0000 0.0001

30 30 | 915588.9037 0.0000 0.0000

1 5 5 2.8754 0.2580 0.0398
10 10 21.4005 0.0446 0.0029

20 20 498.7589 0.0020 0.0002

30 30 26629.4126 0.0000 0.0000

(continued)



286 DaL Ho K et al.

TABLE 4.2 Bayes fators and posterior probabilities for testing Hy : (c+ p11)/(c+ p2) =1 vs.
H;: (c+ p1)/(c+p2) # 1 (continued)

w1 p2 k¢ ony n Bayes factor  Posterior probability  p-value
1 3 2 0 h) 5 11.0401 0.0831 0.29056
10 10 24.55667 0.0391 0.0228

20 20 2183.8789 0.0005 0.0003

30 30 | 76075329.1029 0.0000 0.0008

1 5 5 1.0751 0.4819 0.3705

10 10 11.1865 0.0821 0.0866

20 20 97.8067 0.0101 0.0470

30 30 291.9831 0.0034 0.0012

TABLE 4.3 Fine gravel in surface soils

Soil type Fine gravel (%) z; S?
Good (1) | 50 3.8 65 183 182 16.1 7.6 | 109 40.13
Poor (2) | 76 04 1.1 32 6.5 4.1 4.7 3.94 6.95

4.2. Exarnple

This example was analyzed by Cox (19385). We analyze the same data using
our proposed method. The data in Table 4.3 are used in Steel and Torrie (1980)
to illustrated the Satterthwaite (1946) procedure for the unequal variance case.
Since Z;/Ze = 2.77 and s;/sp = 2.40 , this may be regarded as a ¢ =0, k = 2
oras ¢ = 1, k = 2 because (1 + Z1)/(1 + Z2) = 2.41 is closer to s;/sy by Cox
(1985). The 95% confidence intervals for (¢ + p1)/(c + u2) are given in Table
4.4. The procedures are those of Fieller (1944), Elston (1969), the conventional
analysis using the log transformation and Cox (1985). The procedure given by
Fieller (1945) used the assumption that the data are normally distributed with
common variance. The Elston (1969) procedure predicated normality and un-
equal variances. In some other way, Cox (1985) gave the procedure based on the
relation of variance and mean.

From Table 4.4, the classical procedures exclude unit consistently with the
inference that (c + u1)/(c + p2) # 1. When the prior probabilities are assumed
to be equal, Table 4.5 gives the Bayes factor and posterior probability for testing

Hy . CTH

. c+
=1 wus. fHy: ad

: 1
€+ 2 04‘1127é

From Table 4.5, we see that there is very strong evidence for Hy in terms of
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TABLE 4.4 The 95% confidence intervals for (c + p1)/(c + pz)

Procedure ¢ Interval limits
Cox (1985) 0 1.27, 6.68
Fieller (1944) 0 Improper
Elston (1969) 0 1.13, 7.85
Log Transformation | 0 1.16, 8.90
Cox (1985) 1 1.23, 4.75
Log Transformation | 1 1.21, 5.10

TABLE 4.5 The Bayes factor and posterior probability for testing Hy : (¢ + p1)/(c+ pu2) = 1 vs.
Hy:(c+pm)/(c+p2) # 1

Cc Bfl PF(Hzlml,wz)
0 23.5327 0.9592
1 28.2342 0.9658

posterior probability. The Bayesian test procedure together with the classical
procedures gives fairly reasonable answers.
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