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ON HELLINGER CONSISTENT DENSITY ESTIMATIONT
THEODOROS NICOLERIS! AND STEPHEN G. WALKER?

ABSTRACT

This paper introduces a new density estimator which is Hellinger con-
sistent under a simple condition. A number of issues are discussed, such as
extension to Kullback-Leibler consistency, robustness, the Bayes version of
the estimator and the maximum likelihood case. An illustration is presented.
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1. INTRODUCTION

Let fo(z) = f(=z;6), with 8 € ©, be a parametric family (possibly infinite di-
mensional) of density functions. Independent and identically distributed samples
from fo(x) = f(z;60) are available; we will label these X3, Xs,... The aim in
this paper is to find a Hellinger consistent sequence of density estimates of fo
under simple regularity conditions.

Van de Geer (1993) established sufficient conditions under which the sequence
of maximum likelihood estimators yields H(f3 , fo) — 0 almost surely. Here

a4 [ (V- \/f_o)Q}%

is the Hellinger distance between f and fo. The condition of van de Geer (1993)
involves a uniform law of large numbers result; define
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and ||g||r = [ |g|dF. If (T,d) is a metric space, then the -covering number of
T is labelled N (4, T, d) and define H(4,T,d) = log N(8,T,d). Van de Geer (1993)
showed that if ]

ZH(5,G I 1) > 0

in probability, then

sup =0

9eG

[odtrs-F)

with probability one which in turn implies that H( fgn, fo) — 0 with probability
one. Here, F, is the empirical distribution function and Fj the distribution
function corresponding to fy.

We find a necessary, but not sufficient, condition for H( Iz, fo) — 0 almost
surely (a.s.). We find an alternative density estimator which is Hellinger consis-
tent when this necessary condition holds.

The density estimator, we will label it f”(z), is given by

@) = =3 (@)
=1

and 50 is any member of ©. It is therefore instructive to learn that there are
situations when H(f", fo) — 0 yet H(fn, fo) - 0, where f, = fa.-

The practicability of our estimator is that it is possible to use the designated
family of interest, that is f(z;0), to provide a Hellinger consistent density es-
timator under simpler conditions than those for which the maximum likelihood
density estimator is Hellinger consistent.

In Section 2, we present the result of the paper. Section 3 discusses and
highlights a number of consequences of the result and an illustration is presented
in Section 4.

2. THE REsuLT

Our result is based on the following two lemmas; note that here we are not
assuming the estimators are, at this point, maximum likelihood.

LEMMA 1. Let Ty, T1,T5,. .. be a sequence of estimates of 6y such that T, =
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Tn(X1,...,Xn) with Ty a constant. Then

F(XG; T
hmlnf Z XTE L e Z X;( 50) 1) — 1 a.s.
2] 0 ) 0

1 n
g Zh(fTi—Ufo) — 0 a.s.
i=1

ProOF. Define
f(Xi;Ti1)
f(Xs;60)

and consider the martingale sequence given by

Ji =

Z{J — E(JilFi-1)},
where F; = 0(X1,..., X;). Clearly

Sn = Z {Jl _1+h(fTi_1af0)}a

=1

where h(f, fo) = H?(f, fo)/2. It is well known, see for example Loeve (1963,
p. 387), that if :
1
Z FVar(J ) < 00
n

then Sp/n — 0 a.s. It is easy to see that Var(J,) < E(JZ) =1 and so

1 n 1 n

—T;ZJi —1+ EZh(fTi_l,fo) —0a.s.

=1 =1

Consequently,
1 « 1 o
E.lei >1as & EZIJi —1a.s.,
= 1=

since h(-,-) is non-negative, and

1 & 1 &
;lei —1as < ;Z;h(fTi_l,fo) -0 a.s.,
1= 1=

completing the proof. 0O
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In the next lemma, we provide a sufficient, but not necessary, condition for

XI,TZ )
_ 7 1a.s.
Z 1 as

LEMMA 2. The following results hold:

F(Xi; Tia) 1o, f(X5Tio)
> .S. — e .8.
hmmf E log X 90) 0as énigzllog F(X5:00) —0a.s

and

1 < f( X5 Ti-1) 1~ [ f(X5Tion)
- 10 —_—_— O a.s. = — L k.14 — ]. a.s.
né} ® 77 (Xi;60) né} £ (X 60)

Proor. The first result follows from

{H HX Xz 90 > exp(nc)} < exp(—nc)

for all ¢ > 0. This is an application of the Markov inequality. The Borel-Cantelli
lemma then establishes that

L
hmsup{Hf X 90 )} <1as.
(3] Y]

and hence the result.
The second result follows since

1 f(XsTiy)
— log —————~ =3 0 a.s.
n ; 5T h(X)

implies that

1

{H X“TZ 1) }}" —1a.s.

and an arithmetic mean is greater than or equal to a geometric mean. Hence,
using Lemma 1,

_Z XzaTll 1)—>10,.S‘

completing the proof. d
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We now have the main result of the paper.

THEOREM 1. Let Ty, T1,Ts,... be a sequence of estimates of 6y such that
T, = Tu(X1,...,Xn) with Ty a constant. If

Xl7crl—-
— -1 a.s.
Z XuBO 5
then
H(f", fo) = 0 a.s.,

where
1 n
= _ g flz; Tiq).
4
i=1

PRrOOF. Lemma 1 establishes that
1 n
= hlfny, fo) 2 0 as.
=1

and, because of the convexity of h(-, fo), h(f", fo) — 0 a.s., completing the proof.
O

To our knowledge, there is no previous literature on density estimators of the

type
1 n
= - Z sz‘-—l :
n <
=1

Of course, it does resemble a kernel density estimator except that for our estima-
tor T, = Tn(X1,...,X5), whereas for a kernel density estimator T,, = T,(X,).
Note that we do not have the problem of establishing an arbitrary bandwidth
which is always an issue with kernel density estimation. Of course, this diffi-
culty needs to be balanced with the difficulty of the choice for T;,, though, where
available, the maximum likelihood estimator is an obvious choice.

We should also point out that we could equally consider a sequence of density
estimators ﬁl, rather than T,,, and the sequence is Hellinger consistent for fy
when

Z fz 1 ——>1a.s.

This covers the full non-parametric case when @ is infinite dimensional and it
is more convenient to consider f converging to fy in the Hellinger sense than
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considering the convergence of T,, to 6y in some alternative infinite dimensional
space.
Note that our condition,

1 /f(Xi§Ti—3
ﬁ zz:; %f(Xi;H(T — 1 a.s.

is both necessary and sufficient for
1 n

o > h(fri,, fo) = 0 aus.
i=1

Thus, it is quite clear that the condition is only a necessary one for h(fy, fo) — 0,
where f, = fr,. Hence, there exist examples, though we are unable to present
such examples, in which A(f", fo) = 0 and yet h(fy, fo) = O.

3. CONSEQUENCES OF MAIN RESULTS

Here we discuss a number of points relating to the main result, and we will
drop “a.s.” from the following.

3.1. Kullback-Leibler consistency

Suppose we now define
f(Xi; Tia)
f(X3;60)

so that E(Ki’Fi_l) = _D(fTi_l,fO)- Here D f fo ffo log fo/f) is the
Kullback-Leibler divergence from fy to f. Then define

K; =log

Sn = Z {Kz +L)(fTi_1af0)}

=1

which is a martingale sequence. If sup, Var(K,) < oo, ensuring that S,/n — 0,

> 1 zaJ1 1) N 0,
Z Xz,e())

equivalent to n~1 3" | K; — 0, then

and

2 2Dl fo) 0
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which implies that D(f™, fo) = 0
Consequently,

J(XiTimy)
. l 7y L7—1 =0
Z XuOO)

implies Hellinger consistency (see Lemma 2) whereas both

XuTz 1)
_Zl XzaQO) =0

and sup,, Var(K,) < oo imply Kullback-Leibler consistency.

3.2. Robustness

The use of the martingale sequence introduced in Section 2 allows us to con-
sider what happens to the Hellinger consistent density estimator when the model
is wrong. A manifestation of the wrong model is typically of the type

f(X’LaT’z 1)
“Zl Tty 0

for some § > 0. It may not be this of course but we will assume this to be
true. This is realistic; if T,, — T', then standard law of large numbers arguments

_ fo(z)

suggest that

and, of course, § > 0.
When this limit holds it follows that

1

JXiTin) |7
hmmf{ m} > exp(—0/2)

and hence

1 n
lixr;linf - ; Ji > exp(—4/2).
It remains true that S,/n — 0 and therefore

: 1 <
limsup ~ _ h(fr,_,, fo) < 1~ exp(~6/2).
n i=1

This implies that limsup, A(f", fo) < 1 — exp(—4§/2). So, provided the model is
not too wrong, in the sense that ¢ is small, the estimator introduced in this paper
has good robustness properties.
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3.8. Bayes estimator

Here we consider f,, to be the predictive density for a Bayesian model. That
is, we assign a prior distribution II(#) on the relevant parameter space and then
construct the predictive density

fulz) = / £ (z;60) 1, (d6).

Here II,, is the posterior distribution for 6. It is shown in Walker (2003) that if
the prior II puts positive mass on {6 : D(fy, fo) < €} for all € > 0, then

1¢ fi—l(X1z
w2\ R b

Finding priors which assign positive mass to Kullback-Leibler neighbourhoods of
fo is not too difficult.

3.4. A symmetric estimator

A possible drawback is that the estimator depends on an ordering of the data.
Hence for any data set of size n, there are a possible n! different estimators. For
large data sets, the difference between estimators, in a Hellinger sense, will be
small, as all are Hellinger consistent. It will not be an issue which estimator is
chosen in this case. For small data sets, a solution is provided by averaging over
all possibilities. So let Q be the set of permutations on {1,...,n} with |Q] = nl.
For each w € (2, we have the estimator f

., and so a symmetric estimator is

provided by .
fa= 1 AR
wen

Of course, this is also a Hellinger consistent estimator of fy, which can be seen
by a re-working of Lemma 1 in an obvious way.
3.5. Mazimum likelihood density estimator

Here we let f(;T,) = Fn(-), the maximum likelihood density estimator based
on a parametric family f(-;8). Recall, following Lemma 2, we are content with
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Now

1¢ fi1(X)) 1 fz 1
AN Zl )

:—ZZlog

i=1 k=i )
1 Li(fr-1)
==Y 1og kL)
”; % Li(fx)
= X
:_Z Li—1(fe- 1)+%Zlgfk 1(Xk)

1 Li_1(fx) =1 Fe(Xk)

Here L (f) = [TX, (X;). It then follows that

1 Z fk 1(Xk)

kl kak:

is sufficient for the Hellinger consistency of f".
In this case we can write

n - FilX2)
o~ — + 79
h(f", fo) < o ; og 00 €

where ¢, = Sp/n and ¢, — 0, E(e,) = 0 and Var(e,) < 1/n. This provides a
useful upper bound for the Hellinger distance between f™ and fy;. This allows
data to be monitored as it arrives and a stopping rule determined by the size of

1< filX)
2n Zlog F ’

i=1 fi—1 (Xl)
which provides an upper bound for A(f", fo).

4. ILLUSTRATION

Here we will consider an example. Suppose that

) = exp {Z Tk¢k($)} ,
k=1
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where qSo( ) = 1 and the {¢;}]*, are a set of orthonormal functions. We assume

that fo(z) = exp{)_j-; Tkodr(z)} for some set {7xo}. Now
Zl X ) ;];) Tho — Thyi~1) Pk (X5)

n

< Z A\l 7 (Tko — Tk,i—1)2 X n Z_Zl qS%(XZ

k=0 1=1

Consequently, we have a Hellinger consistency result for f™ under the condition
that the estimators 7y; satisfy

1 n
- > (ki = Tk0)? = 0
1=1

and supy, [ ¢2(z) fo(z)dz < co.

For 74 — 7o, see Crain (1974), who took the 7x; to be the maximum like-
lihood estimators. Crain (1974) does establish L; consistency for his density
estimator, however, this is under the restrictive assumption that fy has bounded
support, say [0,1], and also that fo(z) > 0 for all z € [0, 1], which is excluding
the possibility that fo(0) =0 or fo(1) =0.
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