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SOME NEW ASYMMETRIC ORTHOGONAL ARRAYS

M. L. AGGARWAL! AND VEENA BUDHRAJA?

ABSTRACT

In this paper we make use of the parity check matrices of the codes
based on inverting construction Y; to construct a number of new asymmetric
orthogonal arrays with higher strength and higher number of levels using the
method of construction of asymmetric orthogonal arrays given by Suen et
al. (2001).
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1. INTRODUCTION

Factorial experiments with mixed levels are often encountered in practice
because the choice of factor levels may vary with the nature of the factor. Asym-
metrical orthogonal arrays defined by Rao (1973) are commonly used for plan-
ning such experiments. They have been used extensively by Taguchi (1987) and
his colleagues in industrial experiments for quality improvement. Their use in
agricultural experiments has also been widespread. Asymmetrical orthogonal ar-
rays play a crucial role in experimental design as universally optimal fractions of
asymmetric factorials. See Cheng (1980) and Mukerjee (1982).

A large number of techniques are known for constructing orthogonal arrays
based on Galois field, finite geometry, difference schemes, Hadamard matrices,
mutually orthogonal latin squares and error correcting codes. For an excellent
review on these methods, see Hedayat et al. (1999), Dey and Mukerjee (1999)
and Wu and Hamada (2000).

The literature on the construction of asymmetric orthogonal arrays of strength
higher than 2 is scanty. Cock and Stufken (2000) give a method for construct-
ing asymmetric orthogonal arrays of strength 2 with a large number of 2-level
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factors using Hadamard matrices. Suen et al. (2001) gave a general method
of constructing asymmetric orthogonal arrays of arbitrary strength and obtained
several new families of tight asymmetric orthogonal arrays of strength 3 and some
new families of asymmetric orthogonal arrays of strength 4.

An orthogonal array OA(N, n, g1 X g2 X -+ X ¢p, g) is an N X n matrix with
symbols in the i*® column from a finite set of ¢; (> 2) symbols, 1 < i < n,
such that in every N X g submatrix, all possible combinations of symbols appear
equally often as a row. In particular, if ¢4 = --- = g, = ¢, say, then we get
asymmetric orthogonal array which will be denoted by OA(N, n, ¢, g).

Getting motivated from the statement “Find a good way to use error-
correcting codes to construct asymmetric orthogonal arrays” mentioned in He-
dayat et al. (1999), in this paper we make use of the parity check matrices of the
codes based on inverting construction Y; to construct a number of new asym-
metric orthogonal arrays with higher strength and higher number of levels using
the method of construction of asymmetric orthogonal arrays given by Suen et al.
(2001).

We construct asymmetric orthogonal arrays from the codes obtained using
inverting construction Y;. These asymmetric orthogonal arrays have strength
greater than 2.

Section 2 contains a brief introduction of coding theory. In Section 3, asym-
metric orthogonal arrays are constructed using codes based on inverting construc-
tion Y; given by Edel and Bierbrauer (1998).

2. CoDING THEORY

A linear [n, k, d]q code C over GF(q), ¢ prime or prime power, of length n, di-
mension & and minimum distance d is a k-dimensional subspace of n-dimensional
vector space V,(q). The elements of C are called codewords. The minimum dis-
tance d of the code is the smallest number of positions in which two different
codewords of C differ. Equivalently, d is the smallest number of nonzero symbols
in any nonzero codeword of C. A linear cods may be concisely specified by giving
a k x n generator matrix G whose rows form a basis for the code. The generator
matrix can always be expressed in the form

G = [Ik JX]

where A is a k X (n — k) matrix with elements from GF(g). The dual code C'+
with parameters [n, n —k, d*], of an [n, k, d], code C is of dimension n — k and
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its generator matrix H can always be written in the form
H=[-A" I, 4]

H is called as the parity check matrix of code C. Any d —1 columns of the parity

check matrix, are linearly independent. For more details, see MacWilliams and
Sloane (1977).

3. ASYMMETRIC ORTHOGONAL ARRAYS

Most of the methods presently known for constructing asymmetric orthogo-
nal array apply only to arrays of strength 2. However, relatively less work on
the construction of asymmetric orthogonal arrays of strength greater than two is
available. For a review on these methods, see Dey and Mukerjee (1998). Suen et
al. (2001) gave a general method of constructing asymmetric orthogonal arrays of
arbitrary strength and obtained several new families of tight asymmetric orthog-
onal arrays of strength 3 and some new families of asymmetric orthogonal arrays
of strength 4. They used the concept of full column rank that is linear indepen-
dence of the columns of C matrix, which they constructed using the properties of
finite fields. The method suggested by them is useful for us in connecting coding
theory and asymmetric orthogonal arrays. The proposed construction is based
on the method given by them and using the property of dual distance of parity
check matrix of linear code.

Construction method suggested by Suen et al. (2001) considers an OA(N, n,
g1 Xgo X+ - - Xgn, g) whose columns are called as factors denoted by ¥, Fs,...,Fy.
Also, consider Galois field GF(q), of order g, where ¢ is a prime or prime power.

For the factor F; (1 < 4 < n), define u; columns, say pi,,...,Pi,,, each of
order r x 1 with elements from GF(g). Thus, for the n factors, we have in all
>~ u; columns. Let € be a ¢" x r matrix whose rows are all possible r-tuples over
GF(q). Their result is stated here in the form of a theorem as follows:

THEOREM 3.1. Consider an r x Y u; matriz C = [Ay @ Ay @ -+ 1 Ay,
where A; = [pi, ---Piui]: 1 < i < n, such that for every choice of g matrices
Ai, .. Ay from Ay, ..., Ay, the r X 3 u;; malriz [A;, ... Ay ] has full column
rank over GF(q). Then an OA(q", n, (¢“) X --- X (¢¥"), g) can be constructed.
For this theorem to hold, it is necessary that r > Zuij for each choice of g indices
1,...,0g from1,...,n.

Suen et al. (2001) presented methods for choosing C to satisfy the conditions
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of Theorem 3.1 and generated orthogonal arrays of strength three or four. We
do not construct these C matrices; instead, we use the parity check matrices
(having the property that any d—1 columns are linearly independent) of the linear
codes (in coding theory) based on inverting construction Y; given by Edel and
Bierbrauer (1998). Theorem 3.1 is then used to construct asymmetric orthogonal
arrays of higher strength and with higher number of levels.

Edel and Bierbrauer (1998) gave a computer based method for extending lin-
ear codes, which is inverse of construction Y1. As a result they obtained codes
with record breaking parameters. Construction Y7 and inverting construction Y;
are explained in Appendix. We illustrate the method of construction of asym-
metric orthogonal array with the help of an example as follows:

EXAMPLE 3.1. Let us consider the parity check matrix of [19,11,7]; code
given by Edel and Bierbrauer (1998):

1000000352411004533
0100000131410303531
0010000251403103342
H=10001000151031201305
—10000100150512101035
0000010103421100143
0000001011111100006
0000000000000011111

To construct an OA(7%,16,(72)3 x 7'3,3), we choose the following matrices cor-
responding to the factors of the array:

19 00 00
01 00 00
00 10 00

A= {00], as=]0%] As=]93] and A,, ford<i<i6. (3.1)
00 00 01
00 00 00
00 00 00

A;’s are the (i + 3)** column of the matrix Hl for 4 < i < 16. The rank condition
of Theorem 3.1 is always satisfied for ¢ = 3 by the above matrix H. This can
also be shown with above choices of A; matrices corresponding to the 16 factors.

(1) Let 4,5,k € {4,5,...,16}; i # j # k. For this choice of the indices 14, 7, k,
the matrix [A; A; Aj] will always have rank 3 since minimum distance
of the associated code is 7 which implies that any 6 columns of the parity
check matrix of the associated code are linearly independent.
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(ii) Let ¢ = 1 and 5,k € {4,5,...,16}; i # j # k. For this choice of indices
i,7,k, the matrix [A; A; Aj] will always have rank 4 since any 6 or fewer
columns of H are linearly independent.

(iii) Let i =1, j = 2 and k € {4,5,...,16}; i # j # k. For this choice of indices
i,7,k, the matrix [A; A; Ay] will always have rank 5 since any 6 or fewer
columns of H are linearly independent.

(iv) Let 1 = 1, j = 2 and k = 3. For this choice of indices 4,7, k, the matrix
[A; A; Ay] will always have rank 6 since any 6 or fewer columns of H are
linearly independent.

Thus, in each case, the rank condition of Theorem 3.1 is satisfied and the desired
array can be constructed.

Compute £H where {isa 78 x 8 matrix whose rows are all possible 8-tuples
over GF(7). Next, replace the 49 combinations (00), (01),...,(66) in the first two
columns by 49 distinct symbols, 0,1,2,3,...,48, respectively. Repeat this for the
next two sets of two columns. Then, we get an OA(78,16, (7%)% x 7%, 3).

Similarly, taking A; and A as in (3.1) and A;’s, as the (i + 2)™ column of
the matrix H for 3 < i < 17, we can construct an OA(78,17, (7%)? x 713,4). The
rank condition of Theorem 3.1 is always satisfied for g = 4. Again, replacing the
first two columns and then next two columns by 49 distinct symbols, we get an
OA(78,17,(7%)% x 715, 4).

We can construct an OA(78,18,(72) x 7'7,5) by taking A, as in (3.1) and
A;’s, as the (i + 1)** column of the matrix H for 2 < ¢ < 18. For every choice
of 5 matrices, the rank condition of Theorem 3.1 is satisfied for g = 5. Hence we
get an OA(78,18, (72) x 7'7,5).

To construct an OA(72, 16, (73) x (7?) x 7'*,3), we choose the following ma-
trices corresponding to the factors of the array:

100 00
010 00
001 00
Ay = 888 , Ag= (1)(1) and A;, for 3 <i<16.
000 00
000 00
000 00

A;’s are the (i + 3)"" column of the matrix H for 3 <7 < 16. It can be easily seen
that for every choice of 3 matrices the rank condition of Theorem 3.1 is satisfied by
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the matrix [A; Ay Agl,j #k #£+# 37,1 <3, k,£<16. Hence on computing ¢H,
where ¢ is a 7% x 8 matrix whose rows are all possible 8-tuples over GF(7) and
replacing the 7% combinations under the first three columns by the 343 distinct
symbols 0,1,2,...,342, respectively, we get an OA(73,16, (73) x (7%) x 71, 3).
We can construct many asymmetric orthogonal arrays with higher strength.
The asymmetric orthogonal arrays generated by using the codes based on the
inverting construction Y) are given in Table 1.

TABLE 1

Code

Asymmetric orthogonal arrays

Code

Asymmetric orthogonal arrays

(127, 106, 7]

(162,139, 7)

49,27, 9]

[72,47, 9]

85,74, 6)3

[103,90, 6]s

OA(2%,124, (2%) x 2!%1 3)
0A(271,125,(22)? x 223, 4)
0A(221,126, (2%) x 2'%55)
OA(2%,125,(2°) x 2'%,4)

OA(2%%,159, (2%)° x 2!%°,3)
OA(2%2,160, (22)* x 2%, 4)
OA(22%)161, (2%) x 20 5)
OA(2%%,160, (23) x 2'%° 4)

OA(2%%,45,(2%)* x 2% 4)
OA(2%%,46, (2%)% x 2*3 5)
OA(222, 47, (22) x 2%°.6)
OA(2%2,48,(2%) x 2. 7)
OA(2%%,45, (2%)? x 2*3 4)
0A(2%2,45,(2%) x (2%)* x 2%,4)
OA(2%%,47,(2%) x 2%,6)

OA(2%%,68, (2%)* x 2 4)
OA(2%°,69, (2%)3 x 2% 5)
OA(225,70, (22)% x 259 6)
OA(2%%,71,(2%) x 27°,7)
0A(2%°,68, (2%)% x 255 4)
0A(2%,68,(23) x (2%)% x 2% 4)
OA(22%,70, (2%) x 25°.6)

OA(3',83,(3%) x 3%.3)
OA(3'!,84,(3%) x 3% 4)
OA(3'1,83,(3%) x 3%23)
OA(3%,101, (3%)% x 3%,3)

OA(3'%,102,(3%) x 3% 4)
0A(3%%,101, (3%) x 3'%,3)

(155,133, 7],

(45,24, 9]»

63,39, 9]

[77,51, 9]

95,83, 6]3

[22,12,7]s

0A (272,152, (2%)® x 219 3)
OA(272,153, (22)% x 2% 4)
OA(2%2,154, (22) x 2'%3 5)
0A(2%%)153, (2°%) x 2192 4)

OA(2%,41, (22)* x 2% 4)
0A(2%1,42, (2%)3 x 2%° 5)
0A(2?!,43,(2%)% x 2% 6)
OA(2%,44,(2%) x 2% 7)

0A (22141, (23) x 2% 4)
OA(2%,41,(2%) x (2%)% x 2% 4)
OA (22,43, (2%) x 2%2 6)

OA(2%%,59, (22)% x 2%, 4)
OA(QZ,GO, (22)2 x 2:;,5)
OA(224,61,(22) x 2°9,6)
OA(224,62, (23)2x 2°,7)
OA(224,59, (23) x 2 4)
OA(2%,59,(23) x (29)? x 2°¢,4)
OA(2% 61, (2%) x 2°0,6)

0A(2%8,73, (22)* x 2%° 4)
0A(2%8, 74, (22)% x 27}, 5)
OA(2%8,75, (2%)% x 2%, 6)
OA(2%6,76,(2%) x 27 7)
OA(2%6,73,(23)2 x 271 4)
0A(2%8,73, (23) x (2%)? x 27, 4)
OA(2%,75,(2%) x 274, 6)

0A(3'2,93, (3%)% x 371, 3)
0A(3'%,94,(3%) x 3%% 4)
OA(3'%,93,(3%) x 3%2,3)

0A(31°,19, (3%)% x 3'¢,3)
OA(3'9,20,(3%)2 x 3! 4)
0A(319 21, (3%) x 320, 5)
0A(319,20, (3%) x 31°,4)
0A(3%°,19, (3%) x (3%) x 3'",3)

(continued)
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TABLE 1 (continued)

231

Code  Asymmetric orthogonal arrays Code Asymmetric orthogonal arrays

[27,16,7]s OA(3",24,(3%)% x 3%1,3) [34,22,7]s OA(3!%,31,(3%)° x 3%,3)
OA(317,25,(3%) x 3%, 4) OA(3%,32, (37)* x 3%, 4)
OA(3U, 26, (33) x 322 5) OA(BIz, 33, (32) x 3%2 5)
0A(3'125,(3%) x 3% 4) 0A(3'2,32,(3%) x 3%,4)
0A(3',24,(3%) x (3%) x 3%2,3) 0A(3'2,31,(3%) x (3%) x 3%,3)

[92,76,7]s  OA(3'°,89, (3%)° x 3%,3) [42,29,7]s  OA(3'3,39,(3%)° x 3%,3)

16 24\2 88 13 232 38
OA(316,90, (32) x 358, 4) OA(3%2,40, (3%)% x 3% 4)
OA(316, 91, (33) X 322 5) OA(3!3, 41, (32) X 323 5)
OA(36,90, (3%) x 3%,4) OA(3'3,40,(3%) x 3%,4)
0A(3'%,89,(3%) x (3%) x 3%7,3) OA(3'3,39,(3%) x (3%) x 3%7,3)

[108,91,7]s OA(3'7,105, (3%) x 31°2,3) [63,39,7]s  OA(3',50,(3%)° x 3", 3)

17 2\2 104 14 232 49
OA(317, 106, (32) x 3104 4) OA(3,51,(3%)? x 3% 4)
OA(3”, 107, (33) x 313‘; 5) OA(31:, 52, (32) x 3% 5)
0A(3'7,106, (3%) x 319 4) OA(3%,51,(3%) x 3%°,4)
0A(3'7,105, (3%) x (3%) x 3'%,3) OA(3™,50,(3%) x (3%) x 3%,3)

[29,16,8]s OA(3'3,26,(3%)% x 3%%,4) [85,70,7]s OA(3!%,82,(3%) x 379,3)

13 2\2 25 15 23\2 81
OA(31%,27, (37)7 x 3%°,5) OA(3'5,83,(3%)% x 3% 4)
OA(3'%,28, (32) x 37, 6) OA(3%,84, (3%) x 3%,5)
OA(31%,27,(3%) x 3%, 5) OA(3'%,83,(3°) x 3°2,4)
0A(3'%,25,(3%) x (3%)* x 3%, 3) OA(3%,82,(3%) x (3%) x 3%,3)
OA(3'%,26,(3%) x (3%) x 3%4,4)

(35,21, 8]3 OA(312,32, (32)2 x 3’;’?,4) [24,12,9] OA(3$,20, (32): x 31:,4)
0A(3'%,33, (3%)% x 3%, 5) OA(3'2,21,(3%)® x 3'8 5)
OA(3™,34,(3%) x 3%% 6) OA(3!2%,22,(3%)% x 3%°,6)
OA(3*,33, (3%) x 332 5) 0A(3!2,23,(3%) x 3*2.7)
OA(3,30,(3%)% x (322 x 327,3) 0A(3%2,20,(3%)% x 318 4)
OA(3',30, (3%) x (32)* x 3%7,4) 0A(32,20, (3%)% x (322 x 3'7.3)

o ’ OA(3'220, (3%) x (3%)% x 37, 4)
0A(3'%,22,(3%) x 3%1,6)

[19,10,7)s OA(4°,16,(4%)% x 4'%,3) [65,57,5]a OA(48%,63, (4%)% x 4%%,2)
OA(43, 17, (4;)2 x 45 4) OA (45,64, (4%) x 4%%.3)
0A(4°,18, (4%) x 417, 5) OA(48,83, (4%) x 45%)2)
0A(4°,17, (4%) x 4!6 4)

OA(4°,16, (4%) x (4%) x 414,3)
(26,16,7)s OA(4'°,23, (4%) x 4%°,3) [145,135,5]s OA(41°,143, (4%)% x 4141 2)

OA(419 24, (4%)2 x 472 4)
OA(41°,25, (4%) x 4*%,5)
OA(419 24, (43) x 423 4)
OA(49,23, (4%) x (4%) x 4*1,3)

OA(41°,144, (42) x 4143)
0A(41°,143, (4%) x 4!*2)2)

(continued)
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TABLE 1 (continued)

Code  Asymmetric orthogonal arrays Code  Asymmetric orthogonal arrays

[20,13,6)a OA(47,18, (4%)° x 4'¢3) [87,78,5]la OA(4°,85, (4%)% x 483 92)
OA(47,19, (4%) x 48 4) OA(4°,86, (4%) x 4%, 3)
OA(47,18, (4®) x 4'73) OA(4%,85, (4%) x 4%4)2)

[27,19,6]a OA(4%,25, (4%)? x 473 3) [81,70,6]a OA(4'!,79,(4%)% x 477 3)
OA(48,26, (47) x 475 4) OA(4%,80, (4%) x 47° 4)
OA (45,25, (4%) x 4% 3) OA(4",79,(4%) x 478 3)

[36,27,6]a OA(4°, 34, (4*)* x 4*2)3) [106,94,6]s OA(4'%,104, (4%)% x 4102 3)
OA(4° 35, (4%) x 4%4,4) OA(4'%,105, (4%) x 41%4 4)
OA(4°, 34, (4%) x 4% 3) OA(4'?,104, (4%) x 4% 3)

A complete list of asymmetric orthogonal arrays generated by using the codes
given by Edel and Bierbrauer (1998) with higher number of levels is available with
the authors.
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APPENDIX : CONSTRUCTION Y; AND INVERTING CONSTRUCTION Y]

Let C be a g-ary linear code with parameters [n, k, d]4. Let v be a codeword of
the dual code C* of weight w. Then the subcode of C, which consists of the words
having vanishing entry at the support of v has parameters [n —w, k —w + 1, d].
Construction Y; was used to construct the Nordstrom-Robinson code from the
Golay Code (see MacWilliams and Sloane, 1977). This operation can be inverted
and is known as inverting construction Y) given by Edel and Bierbrauer (1998).
Let a code C with parameters [n, k, d], be given and let H be a parity check
matrix of C. Let H* be obtained by adding a row with entries 0 to H. H*
is lengthened by adding ¢ columns such that the resulting matrix still has the
property that any d—1 columns are linearly independent. The lengthened matrix
is then the parity check matrix of a code [n+1, k+1—1, d];. Now the task is to find
as many new columns as possible. The columns added to H* will have nonzero
entries in the last row. The codes with new parameters have been obtained by
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using this procedure by Edel and Bierbrauer (1998).
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