DOI QR코드

DOI QR Code

초음파진동에 의한 음향유동을 활용한 냉각 메카니즘의 실험 및 이론적 연구

Experimental and Analytical Study of a Cooling Mechanism Using Acoustic Streaming by Ultrasonic Vibrations

  • Loh, Byoung-Gook (Department of Mechanical System Engineering, Hansung University) ;
  • Lee, Dong-Ryul (School of Mechanical and Automotive Engineering, Catholic University of Daegu)
  • 발행 : 2003.09.01

초록

초음파 진동에 의한 음향유동을 활용한 냉각 메카니즘과 대류열전달 향상에 관한 연구가 실험 및 이론적으로 수행되었다. 음향유동 형태와 열전달 특성이 제시되었다. Nyborg 이로에 의한 가열판의 이론적 과도 온도분포는 실험에 의해 측정되었다. 10$\mu\textrm{m}$의 진폭으로 4분안에 3$0^{\circ}C$의 온도강하가 발생하였다. 진폭을 25$\mu\textrm{m}$로 증가시킴에 따라 본 연구의 실험장비에서 습득할 수 있는 최대 온도강하인 4$0^{\circ}C$를 얻을 수 있었다. 실험에서 측정할 수 있었던 주파수 28.4kHz에서의 진폭 25$\mu\textrm{m}$ 조건에서의4$0^{\circ}C$의 온도강하를 이론적 열전달 해석으로도 검증할 수 있었다.

A cooling mechanism using acoustic streaming by ultrasonic vibrations and associated convective heat transfer enhancement is investigated experimentally and analytically. Acoustic streaming pattern and associated heat transfer characteristics are presented. Analytical transient temperature profile of the heated plate following Nyborgs theory is accomplished along with experimental measurement. A temperature drop of 30 C is obtained in 4 minutes with vibration amplitude of 10${\mu}{\textrm}{m}$. As the vibration amplitude is further increased to 25${\mu}{\textrm}{m}$ a temperature drop of 40 C is achieved that is the maximum temperature drop obtained with the current experimental apparatus. Analytical heat transfer solutions verified a temperature drop of 4$0^{\circ}C$ with a vibration amplitude of 25${\mu}{\textrm}{m}$ at 28.4 kHz which is experimentally obtained.

키워드

참고문헌

  1. J. of Acoust, Soc. Am. v.30 no.4 Acoustic Streaming Near a Boundary Nyborg,W.L. https://doi.org/10.1121/1.1909587
  2. J. of Accoust. Soc. Am. v.88 no.5 Outer Acoustic Streaming Lee,C.P.;Wang,T.G. https://doi.org/10.1121/1.400079
  3. Theory of Sound Rayleigh
  4. Boundary Layer Theory Schlicting,H.
  5. J. of Sound and Vib. v.6 no.3 Acoustic Streaming Lighthill,J.
  6. J. of Acoust, Soc. Am. v.32 no.1 Sonically-induced Microstreaming Near a Plane Boundary. Ⅰ. The Sonic Generator and Associated Acoustic Fields Jackson,F.J.;W.L.Nyborg https://doi.org/10.1121/1.1907889
  7. Sensors and Actuators v.77 Design and Optimization of an Ultrasonic Flexural Wave Micropump Using Numerical Simulation Nguyen,N.T.;White,R.M. https://doi.org/10.1016/S0924-4247(99)00216-2
  8. J. of Acoust. Soc. Am. v.40 no.1 Heat Transfer across a Solid-liquid Interface in the Presence of Acoustic Streaming Gould,R.K. https://doi.org/10.1121/1.1910043
  9. J. of Heat Transfer v.115 Convective Heat Transfer From a Sphere Due to Acoustic Streaming Gopinath,A.;Mills,F. https://doi.org/10.1115/1.2910684
  10. Journal of Heat Transfer v.116 Convective Heat Transfer Due to Acoustic Streaming Across the Ends of Kundt Tube Gopinath,A.;Mills,F. https://doi.org/10.1115/1.2910882
  11. Multiphase-flow and Heat Transfer in Materials Processing ASME v.201;297 Heat Transfer to Cylindrical Bodies and Small Particles in an Ultrasonic Standing-wave Fields of Melt Atomizer Uhlenwinkel,V.;R.Meng;K.Bauckhage;P.Schreckenber;Andersen,O.
  12. Int. J. Heat & Mass Transfer v.38 no.10 Acoustic Enhancement of Heat Transfer Between Two Parallel Plates Vainshtein,P.;Fichman,M.;Cufinger,C. https://doi.org/10.1016/0017-9310(94)00299-B
  13. The Minerals, Metals & Materials Society Heat Transfer on a Surface Affected by an Air/Water Interface Undergoing Wave Motion Chen,Z.D.;Taylor,M.P.;Chen,J.J.J.
  14. 1995 IEEE Ultrasonics Symposium Investigation of Acoustic Streaming Excited by Surface Acoustic Waves Uchida;Toyokazu;Suzuki;Takayuki;Shiokawa;Showko
  15. Proceedings of 1991 IEEE Micro Electro Mechanical Systems Ultrasonically Induced Microtransport Moroney,R.M.;White,R.M.;Howe,R.T.
  16. An Introduction to Ultrasonic Motors Sashida,T.
  17. Convective Heat and Mass Transfer Kays,W.M.;Crawford,M.E.