온가가 애반딧불이의 생식과 발육에 미치는 영향

Effects of Temperature on Reproduction and Development of Firefly, Luciola lateralis(Coleoptera: Lampyridae)

  • 발행 : 2003.09.01

초록

항온조건이 애반및불이(Luciolalateralig)의 발육과 생식에 미치는 영향을 조사하였다. 난, 유충, 용의 발육기간은 15-3$0^{\circ}C$의 범위에서는 온도가 높을수록 참았으며, 1$0^{\circ}C$와 35$^{\circ}C$에서는 발육이 되지 많았다. 부화율은 23$^{\circ}C$ 93.3%, $25^{\circ}C$ 91.8%로 23$^{\circ}C$, $25^{\circ}C$에서 부화율이 가장 높았으며, 유충기간은 15$^{\circ}C$에서 341.5 $\pm$ 23.2일, 2$0^{\circ}C$에서 265.5 $\pm$ 17.5일, $25^{\circ}C$에서 250.9$\pm$11.7일이었다. 용기간은 15$^{\circ}C$에서 94.7$\pm$11.5일, 2$0^{\circ}C$에서 417$\pm$9.1일, $25^{\circ}C$에서 18.5$\pm$7.4일이었고, 우화을은 각각 23.3, 89.3, 80.7%이었다. 성충 암컷의 수명은 15$^{\circ}C$에서 18.0일, 2$0^{\circ}C$에서 20.4일, $25^{\circ}C$에서 10.7일, 3$0^{\circ}C$에서 5.8일이었다. 평균산란수는 다른 온도조건보다 2$0^{\circ}C$에서 가장 많았다. 각 태별발육영점온도는 난이 10.6$^{\circ}C$, 유충 14.$0^{\circ}C$ 그리고 용은 13.1$^{\circ}C$이었고, 유효적산온도는 각각 214.8, 1,564.8, 229.2일도이었다. 세대당 순증식을은(R$_{o}$ ) 23$^{\circ}C$에서 177.19로써 가장 높았고, 내적자연증가율은(r$_{m}$ )27$^{\circ}C$에서 0.019로 가장 높았다. 이 결과로써 애반딧불이의 발육과 생식에 적합한 온도는 2$0^{\circ}C$에서 $25^{\circ}C$이었다.

Effects of temperature on the development and reproduction of the Luciola lateralis were investigated at various temperatures. The development time of eggs, larvae, and pupae were shorter at higher temperatures than at lower ones. The insect did not develop at 10$^{\circ}C$ and 35$^{\circ}C$. The hatchability was 61.5% at 15$^{\circ}C$, 73.9% at 20$^{\circ}C$, 93.3% at 23$^{\circ}C$, 91.8% at 25$^{\circ}C$, 74.0% at 27$^{\circ}C$, and 46.0% at 30$^{\circ}C$, indicating the best hatchability rate at the temperature condition of 23 DC. Larval periods were 341.5:t 23.2 days at 15$^{\circ}C$, 265.5${\pm}$17.5 days at 20$^{\circ}C$, and 250.9${\pm}$11.7 days at 25$^{\circ}C$. Pupal periods were 94.7${\pm}$11.5 days at 15$^{\circ}C$, 41.7${\pm}$9.1 days at 20$^{\circ}C$, and 18.5${\pm}$7A days at 25$^{\circ}C$. Emergence rate was 23.3, 89.3 and 80.7%, respectively at the above temperatures. Adult longevity of female was 18.0 days at 15$^{\circ}C$, 2004 days at 20$^{\circ}C$, 10.7 days at 25$^{\circ}C$, and 5.8 days at 30$^{\circ}C$. Mean fecundity per female was higher at 20$^{\circ}C$ compared with at other temperatures. The developmental zero point temperatures (1) and the total effect temperatures (I<) of egg, larva, pupa, and complete development were 10.6, 14.0, and l3.1$^{\circ}C$ and 214.8, 1,564.8, and 229.2 degree-days, respectively. Mean generation time in days (T) was shorter at higher temperature. Net reproductive rate per generation (Ra) was the lowest at the highest temperature as well as at the lowest, and it was 177.19 which was the highest at 23$^{\circ}C$. The intrinsic rate of natural increase (r$\sub$m/) was highest at 27$^{\circ}C$ as 0.019. As a result, optimum range of temperature for L. lateralis growth was between 20-25$^{\circ}C$.

키워드

참고문헌

  1. Arai, T. 1996. Temperature-dependent development rate of three mealbug species, Pseudococcus citriculus Green, Planococcus citri (Risso), and Planococcus Kraunhiae (Kumana) (Homoptera: Pseudococcidae) on citrus. Jpn. J. Appl. Entomol. Zool. 40: 25-34 https://doi.org/10.1303/jjaez.40.25
  2. Braman, S.K. and A.F. Pendly. 1992. Thermal requirements for development, population trends, and parasitism of azalea lace bug. J. Econ. Entomol. 85: 870-877
  3. Kanda, Z. 1933. Study of firefly (1): Life cycle of Genji-firefly (Luciola cruciata). Entomol. 7: 219-239
  4. Kanda, Z. 1934. Study of firefly(l): Life cycle of Luciola cruciata Entomol. 8: 67-73
  5. Kim, C.W. and S.H. Nam. 1981. Present status of the Korean fireflies and their conservation. Bull. Korean Asso. Conser. Nature Ser. 3: 311-324
  6. Kim, I.S., S.C. Lee, J.S. Bae, B.R. Jin. S.E. Kim, J.K. Kim, H.J. Yoon, S.R. Yang, S.H. Lim and H.D. Sohn. 2000. Genetic Divergence and Phylogenetic Relationships among the Korean Fireflies, Hotaria papariensis, Luciola lateralis, and Pyrocoelia rufa (Coleoptera: Lampyridae), using Mitochondrial DNA Sequences. Korean J. Appl. Entomol. 39: 211-226
  7. Kwon, G.M., Y.I. Lee and K.H. Choi. 1998. Development and prey consumption of phytoseiid mites, Amblyseius womwesleyi, A. fallacis, and Typhlodromus occidentalis under controlled environments. Korean J. Appl. Entomol. 37: 53-58 (in Korean)
  8. Miishi, H. 1990. Message from the waterside of Genji-firefly. Singoimainichi-sinbunsa. Tokyo. 86-118
  9. Nagane, D. 1981. Taxonomy of Firefly. Nyusaienchi Press. Tokyo 93-94
  10. Noh. Y.T., K.M. Baek, I.C. Shin and I.H. Moon. 1990. Propagation of Korean Fireflies, Luciola lateralis Motschulsky. Korean J. Entomol. 20: 1-9
  11. Ohba, N. 1983. Firefly fauna in Kanagawa prefecture. Ann. Rept. Yokosuka city Mus. 29: 17-19
  12. Ohba, N. 1988. Genji-firefly. Bunichi-sougou Press. Tokyo. 198 pp.
  13. Okamoto, H. 1924. The insect fauna of Quelopart Island, Bull. Agr. Exp. Sta. Chosen, I: 182-183
  14. Price. P.W. 1997. Demography: Population growth and life tables. pp. 305-340. In Insect ecology. 3rd., 874 pp. Jhon Wiley & Sons, Inc. New York
  15. Pruess, K.P. 1983. Day-degree methods for pest management. Environ. Entomol. 12: 613-619
  16. SAS Institute. 1991. SAS/STAT user's guide, Ststistics, Version 6.04. SAS Institute, Cary, N.C., USA
  17. Suzuki, H. 1997. Molecular phylogenetic studies of Japanese firefly and their mating systems (Cloeoptera: Cantharoidea). TMU Bull. Natl. His., 3: 1-53
  18. The Entomological Society of Korea & Korean Society of Applied Entomology. 1994. Check list of insects from Korea. KonKuk Univerity Press. 744 pp. Seoul