A note on the second Gaussian curvature of the helicoidal surfaces*

Division of Mathematics and Informational Statistics, Wonkwang University

Bong-Sik Cho

You-Mi Seo

Abstract

We define the second Gausssian curvature K_{II} by using Brioschi's formula and shall disscuss the helicoidal surfaces satisfying $K_{II} = H$.

0. History and Introduction

A regular surface $M \subseteq \mathbb{R}^3$ with Gaussian curvature K > 0 has a positive definite symmetric bilinear second fundamental form II. Viewing the second fundamental form as a new metric, we can obtain its Gaussian curvature K_{II} . It is well-known that the concept of the second Gaussian curvature K_{II} plays an important role in a regular surface.

A surface is called a Weingarten surface or W-space if there is a nontrivial relation between the mean curvature H and the second Gaussian curvature K_{II} . We first note that a minimal surface satisfies $K_{II} = 0$. In 1972, R. Schneider has shown that a surface with constant K_{II} is a sphere. In 1977, T. Koufogiorgos and T. Hasanis has given a proof that the sphere is the only closed ovaloid satisfying $K_{II} = H$. In 1981, W. Kuhnel

^{*} This paper was supported by Wonkwang University in 2001.

is studied for surfaces of revolusion with $K_{II} = H$. In 1992, D. E. Blair and T. Koufogiorgos has shown that a ruled surface with $K_{II} = H$ yields to $K_{II} = 0$ and the sphere must be a piece of a helicoid.

A natural generalization of rotation surfaces are the helicoidal surface. Many authors have been concerned with the problem of characterization of the helicoidal surface by the curvature K_{II} of the second fundamental form.

The aim of this paper is to prove that the helicoidal surfaces satisfying $K_{II} = H$ are locally characterized by constancy of the ratio of the principal curvatures.

1. Second Gausssian curvature

In 1852, Brioschi expresses the Gaussian curvature of a patch $x: U \to \mathbb{R}^3$ entirely in terms of the first fundamental form and obtains Brioschi's Formula which is

$$K = \frac{1}{(EG - F^{2})^{2}} \left\{ \begin{vmatrix} -\frac{1}{2} E_{vv} + F_{uv} - \frac{1}{2} G_{uu} & \frac{1}{2} E_{u} & F_{u} - \frac{1}{2} E_{v} \\ F_{v} - \frac{1}{2} G_{u} & E & F \\ \frac{1}{2} G_{v} & F & G \end{vmatrix} - \begin{vmatrix} 0 & \frac{1}{2} E_{v} & \frac{1}{2} G_{u} \\ \frac{1}{2} E_{v} & E & F \\ \frac{1}{2} G_{u} & F & G \end{vmatrix} \right\}.$$

The Gaussian curvature K of M in \mathbb{R}^3 equipped with a metric I is given by Brioschi's formula. Since E, G>0, $\left| {E \atop F} {F \atop G} \right|>0$. A regular surface M in \mathbb{R}^3 with positive Gaussian curvature K has a positive definite second fundamental form II. Thus II is bilinear and symetric and positive definite.

Viewing the second fundamental form II as a new metric we can consider another Gaussian curvature, we derive the second Gaussian curvature K_{II} by applying e, f, g instead of E, F, G in Brioshi's formula. The second Gaussian curvature is define by

$$K_{II} = \frac{1}{(eg - f^{2})^{2}} \left\{ \begin{vmatrix} -\frac{1}{2} e_{vv} + f_{uv} - \frac{1}{2} g_{uu} & \frac{1}{2} e_{u} & f_{u} - \frac{1}{2} e_{v} \\ f_{v} - \frac{1}{2} g_{u} & e & f \\ \frac{1}{2} g_{v} & f & g \end{vmatrix} - \begin{vmatrix} 0 & \frac{1}{2} e_{v} & \frac{1}{2} g_{u} \\ \frac{1}{2} e_{v} & e & f \\ \frac{1}{2} g_{u} & f & g \end{vmatrix} \right\}.$$

2. Helicoidal surfaces

A natural generalization of rotation surfaces are the helicoidal surfaces that can be defined as follows. Consider the one-parameter subgroup $g_t: \mathbb{R}^3 \to \mathbb{R}^3$ of the group of rigid motions of \mathbb{R}^3 given by

$$g_t(x, y, z) = (x\cos t + y\sin t, -x\sin t + y\cos t, z + ht), t \in \mathbb{R}^3$$

The motion g_t is called a helicoidal motion with axis O_z and pitch h. A helicoidal surface M with axis O_z and pitch h is a surface that is invariant by g_t for all t. A surface M has the form

$$\mathbf{x}(\phi, \rho) = (\rho \cos \phi, \rho \sin \phi, \lambda(\phi) + h\phi),$$

where ρ and ϕ are polar coordinates in the *xy*-plane and the *xy*-plane has been rotated so that O_x is the origin of ϕ . If h=0, the helicoidal surface is a surface of revolution. If $\lambda' = \frac{d\lambda}{d\rho} = 0$, M is a helicoidal.

Lemma 1. (Bour) For a helicoidal surface M there exists a two-parameter family of helicoidal surfaces isometric to M.

Proof. The first fundamental form of (4-1) can be written

$$ds^{2} = E d\rho^{2} + 2F d\rho d\phi + G d\phi^{2}$$
$$= (1 + \lambda') d\rho^{2} + 2h\lambda' d\rho d\phi + (\rho^{2} + h^{2}) d\phi^{2}$$

where $\lambda' = \frac{d\lambda}{d\rho}$.

We introduce new parameter (u, v) by functions $u = u(\rho, \phi)$ and $v = v(\rho, \phi)$ that satisfy

$$\frac{\partial u}{\partial \rho} = (\rho^2 + h^2)^{-\frac{1}{2}} [1 + \rho^2 \lambda'^2 (\rho^2 + h^2)^{-1}]^{\frac{1}{2}}, \quad \frac{\partial u}{\partial \phi} = 0,$$

$$\frac{\partial v}{\partial \rho} = (\rho^2 + h^2)^{-1} h \lambda', \quad \frac{\partial v}{\partial \phi} = 1.$$

Then $\frac{\partial(u,v)}{\partial(\rho,\phi)} = \frac{\partial u}{\partial\rho} > 0$. We can write in the natural parametrization

$$ds^2 = (\rho^2 + h^2)(du^2 + dv^2).$$

We are now reduced to showing that given a function x = x(u), we can find function ρ , λ and ϕ of u and v satisfying

$$x^{2}du^{2} = d\rho^{2} + \rho^{2}(\rho^{2} + h^{2})^{-1}d\lambda^{2}$$
$$xdv = \pm (\rho^{2} + h^{2})^{\frac{1}{2}}(d\phi + h(\rho^{2} + h^{2})^{-1}d\lambda)$$

for an arbitrary constant h. From the above, ρ and λ do not depend on v. Since

$$x = \pm \left(\rho^2 + h^2\right)^{\frac{1}{2}} \left\{ \frac{\partial \phi}{\partial v} + \frac{h}{\rho^2 + h^2} \frac{d\lambda}{dv} \right\}$$

and

$$x\frac{dv}{du} = \pm \left(\rho^2 + h^2\right)^{\frac{1}{2}} \left\{ \frac{\partial \phi}{\partial u} + \frac{h}{\rho^2 + h^2} \frac{d\lambda}{du} \right\},$$
$$\frac{\partial \phi}{\partial u} = -\frac{h}{\rho^2 + h^2} \lambda, \qquad \frac{\partial \phi}{\partial v} = \pm \frac{x}{\left(\rho^2 + h^2\right)^{\frac{1}{2}}}$$

where dot denote the derivative in u.

Hence $\frac{\partial}{\partial u} \left(\frac{\partial \phi}{\partial v} \right) = 0$ and so $\frac{x}{\left(\rho^2 + h^2 \right)^{\frac{1}{2}}}$ does not depend on u. Therefore we can

set

$$\frac{x}{\left(\rho^2 + h^2\right)^{\frac{1}{2}}} = \frac{1}{m} \neq 0, \quad m = \text{constant}.$$

If follows that

$$\dot{\rho}^2 = m^4 x^2 \dot{x}^2 (m^2 x^2 - h^2)^{-1}$$

Since

$$x^{2} = \dot{\rho}^{2} + \rho^{2} (\rho^{2} + h^{2})^{-1} \dot{\lambda}^{2}$$

$$= m^{4} x^{2} \dot{x}^{2} (m^{2} x^{2} - h^{2})^{-1} + (m^{2} x^{2} - h^{2}) m^{-2} x^{-2} \dot{\lambda}^{2},$$

$$\dot{\lambda}^{2} = (m^{2} x^{2} - h^{2})^{-2} m^{2} x^{4} y^{2} \quad \text{where} \quad y = (m^{2} x^{2} - m^{4} \dot{x}^{2} - h^{2})^{\frac{1}{2}}.$$

Since

$$x dv = \pm mx (d\phi + h(m^2 x^2)^{-1} d\lambda)$$

$$d\phi = \pm m^{-1} dv - hm^{-2} x^{-2} d\lambda$$

$$= \pm m^{-1} dv - \frac{y}{m(m^2 x^2 - h^2)} du$$

Therefore the helicoidal surfaces

$$\mathbf{x}(u, v) = (\rho(u)\cos\phi(u, v), \rho(u)\sin\phi(u, v), \lambda(u) + h\phi(u, v)).$$

are all isometric with first fundamental form given by $s^2 = x^2 (du^2 + dv^2)$, where

$$\rho = \int \frac{m^2 x}{\sqrt{m^2 x^2 - h^2}} \, dx = (m^2 x^2 - h^2)^{\frac{1}{2}},$$

$$\phi = \pm m^{-1} \left(\int dv - h \int \frac{y}{m^2 x^2 - h^2} \, du \right),$$

$$\lambda = \pm m \int \frac{x^2 y}{m^2 x^2 - h^2} \, du.$$

When m=1 and h=0, Bour's lemma asserts the existence of a two-parameter family of helicoidal surfaces isometric to a given rotation surface.

Since the Gauss map of M is given by

$$U = \frac{1}{x^2} (\dot{\rho} h \sin \phi - \rho \dot{\lambda} \cos \phi, - \dot{\rho} h \cos \phi - \rho \dot{\lambda} \sin \phi, \rho \dot{\rho}),$$

we get

$$K = \frac{\dot{x}^2 - x \dot{x}}{x^4}, \quad H = \frac{\dot{y}}{2x \dot{x}}$$

and

$$K_{II} = \frac{1}{(eg - f^{2})^{2}} \left\{ -\frac{1}{2} \ddot{g}(eg - f^{2}) + \begin{vmatrix} 0 & -\frac{1}{2} \dot{g} & 0 \\ \frac{1}{2} \dot{g} & e & f \\ 0 & f & g \end{vmatrix} - \begin{vmatrix} 0 & 0 & \frac{1}{2} \dot{g} \\ 0 & e & f \\ \frac{1}{2} \dot{g} & f & g \end{vmatrix} \right\}$$

$$= -\frac{\ddot{y}}{4(\dot{x}^{2} - x \ddot{x})} - \frac{1}{4} \left\{ \frac{\ddot{y}}{(\dot{x}^{2} - x \ddot{x})} - \frac{\ddot{y}(\dot{x}^{2} - x \ddot{x})'}{(\dot{x}^{2} - x \ddot{x})^{2}} \right\}$$

$$= -\frac{\ddot{y}}{4(\dot{x}^{2} - x \ddot{x})} - \frac{1}{4} \left(\frac{\ddot{y}}{(\dot{x}^{2} - x \ddot{x})} \right)'.$$

Let
$$c = \frac{k_1}{k_2} = \frac{H + \sqrt{H^2 - K}}{H - \sqrt{H^2 - K}}$$
 and $w = \frac{4H^2}{K} = \frac{(k_1 + k_2)^2}{k_1 k_2} = \frac{(1 + c)^2}{c}$. (*)

Then we have $\dot{x}^{2}(\dot{x}^{2}-x\dot{x})w=x^{2}\dot{y}^{2}$.

Theorem 2. Let M be a helicoidal surface with $K\neq 0$. Then $K_{II}=H$ if and only if $\frac{k_1}{k_2}$ is constant.

Proof. If the surface M is minimal, then H=0. Thus y=0. Hence we have $K_{II}=0$. If M is not minimal,

$$4(K_{II} - H)H = \left\{ -\frac{\ddot{y}}{(\dot{x}^{2} - x\ddot{x})} - \left(\frac{\dot{y}}{(\dot{x}^{2} - x\ddot{x})} \right)' - \frac{2\dot{y}}{x\dot{x}} \right\} \frac{\dot{y}}{2x\dot{x}}$$

$$= \left\{ -\frac{\ddot{y}}{(\dot{x}^{2} - x\ddot{x})} - \left(\frac{\dot{x}^{2}}{x^{2}\dot{y}} \right)'w - \frac{2\dot{y}}{x\dot{x}} - \frac{\dot{x}^{2}}{x^{2}\dot{y}}\dot{w} \right\} \frac{\dot{y}}{2x\dot{x}}$$

$$= -\frac{\dot{x}\dot{w}}{2x^{3}} = (x^{-2}) \cdot \left(\frac{H^{2}}{K} \right)'.$$

Using the above equation and (*) we have the proof.

References

- 1. Baikoussis, C. and Koufogiorgos, T. "On the inner curvature of the second fundamental form of helicoidal surfaces," *Arch. Math.* 68(1997), 169–176.
- 2. Baikoussis, C. and Koufogiorgos, T. "Helicoidal surfaces with prescribed mean Gaussian curvature," *Geom. J.* 63(1998), 25–29.
- 3. Blair, D. E. and Koufogiorgos, T. "Ruled surfaces with vanishing second Gaussian curvature," *Monatoh. Math.* 113(1992), 177–181.
- 4. Do Carmo, M. and Dajczer, M. "Helicoidal surfaces with constant mean curvature," *Tohoku Math. J.* 34(1982), 425–435.
- 5. Gray, A. Modern Differential Deometry of Curves and Surfaces, CRC Press, Inc., 1993.
- 6. Hasanis, T. and Koufogiorgos, T. "A characteristic property of the sphere," *Proc. Amer. Math. Soc.* 67(1977), 303–305.