Analysis of Nitrate Contents of Korean Common Foods

Bo Young Kim* and Sun Yoon
Dept. of Food and Nutrition, Yonsei University, Seoul 120-749, Korea

Abstract

Nitrate, a common component of man’s chemical environment, is present in foods either naturally or in an additive introduced during processing of foods. Nitrate level of foods have been found depending on nitrosation of soils and other various environmental factors. Therefore data on nitrate contents of foods reported in other countries can not be adapted to Korean foods. Also data on nitrate levels of Korean foods available were reported 10 years ago, which would be assumed to differ from those of foods currently consuming by Koreans. The present study was attempted to determine nitrate contents of common foods. Based on National Nutrition Survey Report 143 food items out of 14 food groups were selected for this study. Nitrate levels of common foods used in the study were from N.D. (not detected) to 673.33 mg/kg foods. Mean nitrate levels of food groups 27.2 mg/kg of cereal and grain products, 78.1 mg/kg in potatoes and potato products, 8.3 mg/kg in legumes and their products, N.D. of seeds and nuts, 1012.1 mg/kg of vegetables and their products, 76.3 mg/kg fungi and mushrooms, 42.2 mg/kg fruits, 34.5 mg/kg of meat, poultry and their products, 0 mg/kg in eggs, 23.9 mg/kg in fish, shellfishes and their products, 23.0 mg/kg in seaweeds, 7.7 mg/kg milk and dairy products, 26.3 mg/kg in seasonings, 68.0 mg/kg in others.

Key words: nitrate, Korean foods

서 론

질산염은 1개의 질소(N) 원자와 3개의 산소(O) 원자의 화학적 결합으로 이루어진 질산(HNO3)의 염으로 식품세계에서 이온 상태로 존재하며, 인간의 화학적 환경의 일반적인 구성 성분이기도 하다(1,2). 질산염의 균형은 크게 천연(natural) 형태와 합성(synthetic) 형태 및 환경으로 나누어 생각할 수 있다.

천연 형태의 균형은 식품 내 천연적으로 함유되어 있는 질산염을 가리키며, 식품에 따라 그 양이 매우 다양하다. 육류의 경우 원래 질산염이 함유되어 있지 않지만, 질산염이 매우 많이 함유된 사료를 먹은 육류에서 그 양이 증가하는 것을 볼 수 있으며(3), 가공과정에서 치가되는 보존제의 양에 따라 달라지기도 하는데 최근 체조기술의 임상적으로 육류 가공품의 질산염 함량은 꾸준히 감소하고 있는 추세이다(4). 우유 및 유제품은 육류와 달리 사료의 영향을 받지 않으나, 보고된 균형을 보면 그 함량이 0.5 mg/kg(3)~2.2 mg/kg(5)의 범위에 있다. 꿀에는 질산염은 대게적으로 적게 함유되어 있으나, 재배조건이나 종에 따라 다르며, 과일류는 대체적으로 질산염이 많이 함유된 바나나와 망가를 제외하면 거의 함유되지 않아(6). 한편, 육류의 질산염 함량은 그 범위가 매우 넓어 질산염 함량이 상대적으로 높은 경우 최소 26 mg/kg, 최대 380 mg/kg까지 검출되며 일반적으로 5~30 mg/kg이다(7). 체소류 질산염은 식사를 통해 섭취하는 주 공급원이며, 질산염 전체 섭취량의 75~80%를 차지한다. 체소류의 질산염 함량에 대한 연구는 다른 식품군에 비해 비교적 많은 자료가 있으며, 함량도 1~10000 mg/kg으로 매우 다양하다(2,4,7~14). 또한, 식물 종, 벌의 세기, 논도, 비료 사용여부, 재배조건, 토양과 계절적 요소의 상호관계 등 여러 요인이 영향을 미치기도 하며, 벌의 세기나 논도가 높으면 질산염 함량은 높아 비닐하우스 재배보다는 자연에서 재배된 채소의 질산염이 더 낮게 나타난다(4,6,9).

이렇듯 질산염은 거의 모든 식품에 천연적으로 인위적이든 함유되어 있어, 그 함량에 따라 문제가 되어 왔다. 그러나 최근 연구 결과를 보면, 질산염 자체는 독성이 없으며, 독성을 일으킬 수 있는 노출된 사료가 없으며, 질산염과 질산염으로 생성되는 발생성 폐질인 N-nitroso compounds에 대한 역학조사에서도 식품을 통해 섭취된 질산염만으로는 암을 유발하

* Corresponding author: E-mail: 75bykim@naver.com
Phone: 82-2-380-1678, Fax: 82-2-380-1660
지 않는다고 보고되고 있다(4,8).

그러나 최근 체소류에 존재하는 질산염의 안전성에 대한 문제 및 채식의 증가로 식산염 함량이 다른 식품군에 비해 높은 체소류의 섭취가 증가함에 따라 식품을 통해 섭취되는 1일 정산염 함량의 평가가 요구되고 있는 실정이다. 그러나 질산염 섭취량 평가에 기초자료인 식품 질산 함량에 대한 질산염 함량 자료들은 이미 10년전의 것들이어서 지금 섭취하고 있는 식품에 많이 다르거나 일부 식품군에 한정되어 있으며, 유럽 등 외국의 함량도 보고된 바 있으나 보편이고 여러 가지 환경요인이 영향을 받는 질산염 함량을 우리나라 식품에 직접 적용하기에는 어려움이 많다. 따라서 본 연구에서는 국민 영양조사에서 토대로 상용식품을 섭취하고 이를 식품에 함유된 질산염 함량을 조사하여 1일 질산염 섭취량 조사의 기초자료로 활용하고자 하였다.

재료 및 방법

조사 식품의 선정

조사 식품은 95 국민영양조사결과보고서(15)의 식품섭취 실태조사와 국민영양조사를 이용한 우리나라 다소비식품의 섭취량에 관한 연구(16) 결과를 토대로 식품별 1인 1일 섭취량에 따라 선정하고, 국민영양조사에서 누적된 식품들과 앞의 자료에는 없지만 많이 섭취하거나 새롭게 소비가 증가한 식품을 한국인 영양권량의 식품량별로(17) 등을 참고로 추가하였다. 특히 질산염 함량이 높은 체소류는 보다 큰 비중을 두었다.

식료의 전처리

식료는 서울 시내 마켓 및 재래시장 등에서 식품별로 각기 다른 회사의 식품은 3가지 구구하여 Tsuji 등(13,18)의 방법으로 질산염 함량과 성분에 따라 질산염의 함량을 취한 뒤 80℃로 가온 0.2 M sodium barioate(Na3B4O7·10 H2O) 50 mL을 첨가하여 homogenizer(HG–92G, TAIJEC CORPORATION, Japan)로 균질화한 후 다시 0.2 M sodium barioate를 첨가하여 전량을 100 mL로 하였다. 이를 80℃의 수육에서 15분간 가온하고 즉시 0℃로 냉각, 약분한 후 액체를 들어온 GuardT–RP cartridge로 여과하여 시험용액으로 하였다(19).

Table 1. Nitrate contents of cereal and grain products

<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO3<30 mg/kg</td>
<td>Black bean paste noodle (88.0±6.9), Spaghetti (66.0±4.6)</td>
</tr>
<tr>
<td>10<NO3≤50 mg/kg</td>
<td>Ddok Bok Gi (30.0±3.0), Wheat (medium flour) (30.0±0), Dumpling (boiled) (28.0±4.0), Hot dog (36.7±30.6), Noodle (instant, frying) (15.0±1.0)</td>
</tr>
<tr>
<td>NO3≤10 mg/kg</td>
<td>Hamburger (10.0±2.0), Buckwheat noodle (boiled) (63±0.6), Cooked rice (60.0±1.7), Noodle (instant) (60±0), Cereal (corn flakes) (5.0±0), Corn (steamed) (ND1), Loaf bread (with whole milk) (ND2)</td>
</tr>
</tbody>
</table>

1Values are mean±SD (mg/kg).
2ND = not detected.

질산염의 측정

질산염 함량 측정은 Merck사의 소형 반사식 광도계 시스템인 Reflectoquant® System(RQ–flex System)을 사용하였으며, 사용한 질산염 사정기의 정산염 함량을 나타내는 측정범위가 다른 Bar Code 518과 519를 사용하였는데, Bar Code 518의 측정범위는 5 ~ 225 mg/L, 519는 3 ~ 90 mg/L이다. 측정방법은 식품용접시 펌프시를 냉동수와 동시에 반사식 광도계의 시각 스위치를 놓리 1분간 반응시키고, 반응 종료 5초를 알리는 알람소리에 맞추어 시험지를 광도계의 측정 부위에 넣어 측정하였으며, 측정은 시리마다 3회 반복하였다. 본 방법은 질산염 측정에 많이 이용되는 카탈드법의 측정치와 잘 일치하는 것으로 알려져 있다(20).

결과 및 고찰

조사 식품의 선정

조사 식품은 총 14개 식품군, 137종으로 곡류 및 그 가공품 14종, 감자류 및 그 가공품 3종, 두유 및 그 가공품 5종, 쌀류 5종, 체소류 및 그 가공품 36종, 비섯류 5종, 과실류 16종, 육류 및 그 가공품 6종, 난류 2종, 어패류 및 그 가공품 19종, 해조류 4종, 육류 및 그 가공품 4종, 조미료 11종, 기타 7종을 선정하였다.

식품군의 질산염 함량

곡류 및 곡류가공품의 질산염 함량은 Table 1과 같으며, 평균 함량은 27.2 mg/kg이었다. 이 중 찹쌀이 88.0 mg/kg으로 가장 높았고, 스파게티, 밥, 밥가루가 각각 66.0 mg/kg, 39.0 mg/kg, 30.0 mg/kg으로 주로 가공식품에서 높게 나타났는데 찹쌀의 찹과, 스파게티의 소스, 밥과 밥가루의 얇았던 고추장 등이 질산 함량을 높게 기원한 것으로 사료된다. 또한, 밥은 6.0 mg/kg으로 Lee(14)의 보보다 낮게 측정된 반면 밥가루는 Lee(14)와 Walker(9)의 결과보다 높게 검출되었다. 식료는 본 실험에서는 검출되지 않았으나 영국 능리 식품수인부의 1994년(12)과 1997년(19)의 식이요소조사에서 각각 10~13 mg/kg, N.D. ~ 18 mg/kg으로 보고되어 있다. 옥수수는 식초와 같이 검출되지 않았다.

Table 2는 감자류의 두유의 질산염 함량으로 감자류의 평균 함량은 78.1 mg/kg, 두유는 8.3 mg/kg이었다. 감자류는
Table 2. Nitrate content of potatoes, potato products, legumes and their products

<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO_3 > 50 mg/kg</td>
<td>Potato (raw) (185.0 ± 5.0)</td>
</tr>
<tr>
<td>10 < NO_3 ≤ 50 mg/kg</td>
<td>Sweet potato (raw) (40.0 ± 2.0), French fried (29.3 ± 0.6), Kidney bean (raw) (16.0 ± 3.6), Small red bean (raw) (14.0 ± 1.7)</td>
</tr>
</tbody>
</table>
| NO_3 ≤ 10 mg/kg | Soybean milk (2.7 ± 4.6), Soybean curd (0.7 ± 0.6), Green peas (raw) (ND)

1Values are mean ± SD (mg/kg).
2ND = not detected.

185.0 mg/kg으로 감자류 중에서 가장 높았으며 이는 Ko(21)나 Moon 등(10,11), Walker(9)의 결과보다 높지만, European Commission(10)의 규제 범위 안(8) 있었다. 고구마의 경우 Ko(21)나 Walker(9)의 결과보다 낮았고, Moon 등(10, 11)의 함량은 다소 차이가 있었는데 이는 씨앗 부분을 먹는 고구마의 질산염이 토양에 의해 영향을 많이 받기 때문인 것으로 사료된다. 또한, Tsuji 등(13)에서 같이 감자가 고구마에 비해 현저히 차이를 보였다. 한편, 두류에서는 강낭콩 중풍의 질산염 함량이 160 mg/kg으로 가장 높았는데 이는 Walker(9)의 결과인 17.6 mg/kg에 비해 높았고, Moon 등(10,11)의 결과보다는 높았다. 또한, Moon 등(10,11)에서 5.9 mg/kg, 4.0 mg/kg, Tsuji 등(13)에서도 비슷한 수준인 5.4 mg/kg이 보고되었다. 종합적으로는 5종 모두에서 질산염이 검출되지 않았지만, Tsuji 등(13)은 음향서 문헌에서 각각 1.9 mg/kg, 14.8 mg/kg가 검출되었고 보고하였다. 이로 인해 측정기기의 차이 및 시료 전처리에서 종합품에 많은 기술적 정진이 충분히 제거되지 않았기 때문인 것으로 사료된다.

체소류와 벡터류의 질산염 함량은 Table 3과 같으며, 평균 함량은 각각 1012.1 mg/kg, 76.3 mg/kg이었다. 특히 체소류의 질산염 함량은 조사된 모든 식품군 중에서 가장 높았으나, 재료류에는 합산속증을 가지고 비타민 C, E 등이 많이 함유되어 있어 질산염에서 전환되는 아 질산염을 소화하고도 남아 유익성이 탁월하다고 알려져 있다. 또한, 여러 나라에서 식사시절 질산염과 담 방생과의 역학조사를 보면, 전염으로 존재하는 질산염이 많 발생과 관계가 있다고 타인한 과학적 근거가 없었다고 하였다(3,4). 또한, 체소류의 질산염 함량은 평균 6733.3 mg/kg까지도 관법위하게 증가하고 있는데, 이러한 함량의 큰 차이의 주된 원인은 산지, 생육과정, 잔소비력의 시비 등 채배조건에 의한 것으로 생각할 수 있다(13).

특히, 질산염 함량이 높은 것은 부추, 열무, 아욱, 북엇, 시금치, 상치 등의 잔매류가 많았으며, 이는 Tsuji 등(13)의 결과와도 일치하는 것이었고, 상치, 아욱, 열무는 시료간의 차이가 컸다. 시금치, 상추, 양파는 영국 농림식품수산부(22)와 Walker(9) 등의 보고보다 낮게 검출되었고, 배추는 영국 농림식품수산부의 보고(22,23)보다는 높았으나, Tsuji 등(13)은 보보다 낮게 검출되었다. 한편, 양배추는 2종류 모두 영국 농림식품수산부(23)나 Walker(9)의 결과보다 낮았으나, 단근

Table 3. Contents of nitrate in various vegetables and mushrooms

<table>
<thead>
<tr>
<th>Vegetables</th>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO_3 > 1000 mg/kg</td>
<td>Leek (raw) (6733.0 ± 57.7), Leaf radish (raw) (4750.0 ± 477.0), Mallow (raw) (4300.0 ± 360.6), Crown daisy (raw) (3270.0 ± 302.0), Kimchi (Korean cabbage) (2933.3 ± 28.9), Lettuce (raw) (1743.3 ± 280.1), Korean radish (raw) (1713.0 ± 84.5), Spinach (raw) (1457.0 ± 123.7), Kale (raw) (1293.3 ± 58.8), Korean cabbage (raw) (1150.0 ± 427.2)</td>
<td></td>
</tr>
<tr>
<td>500 < NO_3 ≤ 1000 mg/kg</td>
<td>Perilla leaf (raw) (746.7 ± 30.6), Pumpkin (raw) (656.7 ± 80.2), Head lettuce (raw) (333.3 ± 152.8)</td>
<td></td>
</tr>
<tr>
<td>100 < NO_3 ≤ 500 mg/kg</td>
<td>Egg plant (raw) (408.3 ± 7.6), Burdock (raw) (366.7 ± 11.6), Carrot (raw) (290.0 ± 15.7), Broccoli (raw) (280.0 ± 10.0), Cabbage (red, raw) (271.7 ± 7.6), Cabbage (green, raw) (270.0 ± 5.7), Water dropwort (raw) (260.0 ± 60.0), Ginger (raw) (260.0 ± 17.9), Cucumber (raw) (175.0 ± 75.0), Soybean sprout (raw) (118.0 ± 12.1), Pepper (raw) (102.0 ± 7.0)</td>
<td></td>
</tr>
<tr>
<td>50 < NO_3 ≤ 100 mg/kg</td>
<td>Cucumber picked (50.0 ± 17.3), Do Duk (raw) (65.0 ± 9.2)</td>
<td></td>
</tr>
<tr>
<td>NO_3 < 10 mg/kg</td>
<td>Sweet pepper (raw) (41.7 ± 2.9), Welsh onion (raw) (36.0 ± 16.8), Do Ra Ji (raw) (23.0 ± 2.9), Cherry tomato (raw) (16.0 ± 1.0), Onion (raw) (12.0 ± 1.7)</td>
<td></td>
</tr>
<tr>
<td>Mushrooms</td>
<td>Category</td>
<td>Food (content)</td>
</tr>
<tr>
<td>NO_3 > 100 mg/kg</td>
<td>Lentinus edodes (raw) (135.0 ± 0.0), Mushroom (raw) (103.3 ± 5.8)</td>
<td></td>
</tr>
<tr>
<td>NO_3 ≤ 50 mg/kg</td>
<td>Oyster mushroom (raw) (41.7 ± 2.9), Judas’s ear (boiled) (25.0 ± 5.0), Winter fungus (raw) (ND)</td>
<td></td>
</tr>
</tbody>
</table>

1Values are mean ± SD (mg/kg).
2ND = not detected.
Table 4. Nitrate contents of fruits
<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃>100 mg/kg</td>
<td>Banana (176.7±59.5), Melon (134.0±0)</td>
</tr>
<tr>
<td>10<NO₃≤100 mg/kg</td>
<td>Plum (49.0±1.0), Apple (41.7±2.9), Musk melon (240±3.6), Apricot (14.0±2.7)</td>
</tr>
<tr>
<td>NO₃=10 mg/kg</td>
<td>Juji (10.0±0), Grape (63±0.6), Water melon (5.0±0), Persimmon (2.0±0), Kiwi (2.0±0)</td>
</tr>
<tr>
<td>ND²</td>
<td>Peach, Pineapple, Orange, Mango, Citrus fruit</td>
</tr>
</tbody>
</table>

¹Values are mean±SD (mg/kg). ²ND = not detected.

의 경우는 Walker(9)와 비슷하였지만, 영국 농림식품수산부 (22)보다는 높았다. 한편, 숙주나활과 역겨에서는 질산염이 검출되지 않았다. 버섯류 중에서는 표고버섯이 135.0 mg/kg으로 가장 많았고 손버섯, 느타리버섯, 목버섯의 순이었으며, 패밀버섯에서는 질산염이 검출되지 않았다.

Table 4는 과실류의 질산염 함량이며, 그 함량은 불검정~176.7 mg/kg의 범위에 있었고, 평균 함량은 42.2 mg/kg이다. 버섯의 함량은 과실류 중에서 가장 높았는데 이는 Walker(9), Tsuji 등(13)의 보고와 일치하는 결과이며, 토종은 134.0 mg/kg으로 그 다음으로 높았다. 한편, 감, 맛고, 복숭아, 오렌지, 과단류에서는 질산염이 검출되지 않았다. 표고버섯의 질산염 함량은 표고버섯(3)의 17~34 mg/kg보다 낮았으며 사과, 오렌지, 맛고의 질산염은 표고버섯(13)의 보고와 다소 차이가 있었다.

육류 및 육류가공품의 질산염 함량은 Table 5와 같이, 평균 함량은 34.5 mg/kg었다. 육류 및 육류가공품은 소성지의 질산염 함량이 132.0 mg/kg으로 가장 높았고, 최고 기, 배의 밀의 질산염 함량은 각각 4.0 mg/kg, 2.0 mg/kg로 비슷하였다. 한편, 닭고기와 돼지고기의 영국 농림식품수산부에서 보고한 결과(24)보다 낮게 검출되었으나, 최고기는 거의 비슷하게 검출되었으며, 주로 가공하지 않은 육류의 질산염 함량이 낮았다. 또한, 육류가공품인 배의 것은 보고된 값은 자료의 수치보다 적었으며(9,24) 많은 병의 가공에서 검출되지 않았지만, Tsuchi 등(13)은 6.3 mg/kg으로 보고하였다. 남은 등과 메추리말을 측정했을 때 모두 검출되지 않았지만, 달걀의 경우 Tsuchi 등(13)에서는 3.8 mg/kg으로 보고되었다.

제조류 및 어류가공품 19종의 질산염 함량은 Table 6과 같다. 관과 및 콜류가공품의 질산염 함량은 0.3~265.0 mg/kg로 분포하였으며, 평균 함량은 23.9 mg/kg었다. 이 중 건조물의 함량이 265 mg/kg으로 가장 높았고, 오징어, 연어(68.0 mg/kg)와 그 다음이었다. 또한, 멧치과 새우절모도 각각 52.0 mg/kg, 19.0 mg/kg로 다른 식품보다 상대적으로 높아 쌍방패류의 질산염 함량이 높음을 알 수 있었다. 이 결과는 Lec(25)의 보고와 약간 차이가 있었다. 그 외 식품들은 대부분 10.0 mg/kg미만이었으며 홍합과 경제가 다소 높았고, 제조류 및 어류가공품의 모든 식품에서 질산염이 검출되었다.

제조류 4종의 질산염 함량은 Table 7과 같이, 평균 함량은 23.0 mg/kg이었다. 제조류 중 가장 높은 것은 파래(30.0 mg/kg)로 누조류의 질산염 함량이 높은 것으로 보이며, 제조류 4종 모두에서 질산염이 검출되었다.

육류 및 육류가공품 4종에 대한 질산염 함량은 Table 8과 같다.

Table 5. Contents of nitrate in meats and poultry products
<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃>100 mg/kg</td>
<td>Sausage (132±0.2)</td>
</tr>
<tr>
<td>0<NO₃≤100 mg/kg</td>
<td>Beef (raw) (4.0±0), Bacon (2.0±0), Chicken (raw) (0.0±0)</td>
</tr>
<tr>
<td>ND²</td>
<td>Pork (raw), Ham</td>
</tr>
</tbody>
</table>

¹Values are mean±SD (mg/kg). ²ND = not detected.

Table 6. Nitrate content of fish, shellfishes and their products
<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃>100 mg/kg</td>
<td>Anchovy (dried) (255±0.0)</td>
</tr>
<tr>
<td>50<NO₃≤100 mg/kg</td>
<td>Common squid, salt-fermented (68.0±1.7), Alaska pollack, roe, salt-fermented (52.0±2.0)</td>
</tr>
<tr>
<td>10<NO₃≤50 mg/kg</td>
<td>Shrimp, salt-fermented (190±1.0), Common sea squirt (raw) (14.0±1.0), Herd-shelled mussel (boiled) (11.7±2.0)</td>
</tr>
<tr>
<td>NO₃≤10 mg/kg</td>
<td>Warty sea squirt (boiled) (9.0±1.0), Grouper (7.0±0.0), Whip-arm octopus (7.0±1.0), Cat fish (boiled) (6.0±1.7), Pacific saury (boiled) (6.0±1.7), Shrimp (boiled), Mackarel (boiled) (6.0±1.0), Bastard halibut (boiled) (6.0±1.0), Crab (boiled) (5.0±1.7), Common squid (boiled) (5.0±1.0), Angler, Hair tail (boiled) (4.0±1.0), Anchovy, salt-fermented (0.3±0.6)</td>
</tr>
</tbody>
</table>

¹Values are mean±SD (mg/kg).
양식품 중의 질산염 함량 분석

Table 8. Nitrates content of milk and dairy products

<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃≥5 mg/kg</td>
<td>Yogurt (10.0±1.7)</td>
</tr>
<tr>
<td>NO₃≤5 mg/kg</td>
<td>Butter (4.0±0.8)</td>
</tr>
</tbody>
</table>

1Values are mean±SD (mg/kg).
2ND = not detected.

요 약

질산염은 인간의 화학적 환경의 한 요소로 식품에 천연적으로 존재하며, 식품의 가공에도 점차가치는 물질이다. 식품의 질산염 함량은 토양의 상태나 다양한 환경 요인에 의해 달라진다. 따라서 식품의 함량에 대한 외국의 자료를 국내 식품에 직접 적용하기 어려우며, 국내의 자료도 이미 10년이 넘은 것들이다. 현재 식품과 있는 것은 다른 것들도 앞으로 세밀하게 가공된 식품을 보고 있는 것으로 자료가 있다. 이에 본 연구에서는 국민영양조사 결과로 14개 식품군, 18개의 식품을 선정하여, 질산염 함량을 조사하였다. 조사된 식품의 질산염 함량은 6733.3 mg/kg로 그 양이 매우 다양했다. 식품군별 양식품의 질산염 평균 함량을 보면, 곡류 및 곡류가공품 27.2 mg/kg, 감자 및 감자류가공품 78.1 mg/kg, 두류 및 두류가공품 8.3 mg/kg, 종정류 물결, 천식류 및 천식류가공품 102.1 mg/kg, 바섯류 76.3 mg/kg, 과실류 42.2 mg/kg, 육류 및 육류가공품 34.5 mg/kg, 날로 미끼류, 어패류 및 어패류가공품 23.9 mg/kg, 해조류 23.0 mg/kg, 유류 및 유류가공품 7.7 mg/kg, 조미료 26.3 mg/kg, 기타 68.0 mg/kg이었다.

문헌

Table 9. Content of nitrate in seasonings

<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃>100 mg/kg</td>
<td>Ko Ch’u Jang (112.0±2.7)</td>
</tr>
<tr>
<td>10<NO₃≤100 mg/kg</td>
<td>Tomato ketchup (50.0±24.3), Pork cutlet sauce (38.0±8.7), Soybean paste (37.0±1.0), Soy sauce (29.0±1.0), Sugar (13.7±4.5)</td>
</tr>
<tr>
<td>NO₃≤10 mg/kg</td>
<td>Salt (7.0±0.0), Salad dressing (2.7±2.9), MSG (0)</td>
</tr>
<tr>
<td>ND²</td>
<td>Mayonnaise, Ferrlila oil</td>
</tr>
</tbody>
</table>

1Values are mean±SD (mg/kg).
2ND = not detected.

Table 10. Nitrate content of miscellaneous foods

<table>
<thead>
<tr>
<th>Category</th>
<th>Food (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃>100 mg/kg</td>
<td>Coffee (450.0±327.9)</td>
</tr>
<tr>
<td>NO₃≤100 mg/kg</td>
<td>Ginger tea (10.0±2.0), Honey (6.0±2.0), Tap water (3.0±0.0), Beer (2.7±1.5), Ground water (2.3±0.6), Well water (2.0±1.0)</td>
</tr>
</tbody>
</table>

1Values are mean±SD (mg/kg).
cology and Pharmacology Section 252: 1–38.