DOI QR코드

DOI QR Code

IRIS Task Scheduling Algorithm Based on Task Selection Policies

태스크 선택정책에 기반을 둔 IRIS 태스크 스케줄링 알고리즘

  • 심재홍 (조선대학교 인터넷소프트웨어공학부) ;
  • 최경희 (아주대학교 정보통신전문대학원) ;
  • 정기현 (아주대학교 전자공학부)
  • Published : 2003.08.01

Abstract

We propose a heuristic on-line scheduling algorithm for the IRIS (Increasing Reward with Increasing Service) tasks, which has low computation complexity and produces total reward approximated to that of previous on-line optimal algorithms. The previous on-line optimal algorithms for IRIS tasks perform scheduling on all tasks in a system to maximize total reward. Therefore, the complexities of these algorithms are too high to apply them to practical systems handling many tasks. The proposed algorithm doesn´t perform scheduling on all tasks in a system, but on (constant) W´s tasks selected by a predefined task selection policy. The proposed algorithm is based on task selection policies that define how to select tasks to be scheduled. We suggest two simple and intuitive selection policies and a generalized selection policy that integrates previous two selection policies. By narrowing down scheduling scope to only W´s selected tasks, the computation complexity of proposed algorithm can be reduced to O(Wn). However, simulation results for various cases show that it is closed to O(W) on the average.

본 논문에서는 IRIS(Increasing Reward with Increasing Service) 태스크들을 위한 기존 온-라인 최적 알고리즘에 근접한 총가치(total reward)를 생성하면서 보다 낮은 스케줄링 복잡도를 가진 휴리스틱(heuristic) 온-라인 스케줄링 알고리즘을 제안한다. 기존 알고리즘들은 총가치를 최대화하기 위해 시스템 내의 모든 태스크들을 스케줄링 대상으로 고려한다. 따라서 이들 알고리즘들은 많은 태스크들을 가진 실제 시스템에 적용하기에는 매우 놀은 시간 복잡도를 가진다. 제안 알고리즘은 시스템 내의 모든 태스크들을 대상으로 스케줄링하는 것이 아니라, 상수 W개의 태스크들을 선택하여 이들을 대상으로 스케줄링 한다. 제안 알고리즘은 W개의 태스크를 어떤 기준에 의해 선택할 것인가를 규정하는 테스크 선택정책에 기반을 두고 있으며, 간단하면서도 직관적인 두 가지 선택정책과 이 둘을 통합한 보다 일반화된 선택정책을 제안한다. 스케줄링 대상을 축소함으로써 제안 알고리즘의 복잡도를 O(Wn)로 줄일 수 있었다. 다양한 성능실험 결과 알고리즘 평균 계산 빈도는 O(W)에 더 가깝다는 것을 확인할 수 있었다.

Keywords

References

  1. J. W. S. Liu, Real-Time Systems, Prentice-Hall, 2000
  2. M. Boddy and T. Dean, 'Deliberation Scheduling for Problem Solving in Time-Constrained Environments,' Artificial Intelligence, Vol.67, No.2, pp.245-285, June, 1994 https://doi.org/10.1016/0004-3702(94)90054-X
  3. J. K. Dey, J. F. Kurose and D. Towsley, 'On-line Scheduling Policies for a Class of IRIS (Increasing Reward with Increasing Service) Real-Time Tasks,' IEEE Trans. Computers, Vol.45, No.7, pp.802-813, July 1996 https://doi.org/10.1109/12.508319
  4. E. Chang and A. Zakhor, 'Scalable Video Coding Using 3-D Subband Velocity Coding and Multi-Rate Quantization,' Proc. IEEE Int'l Conf. Acoustic, Speech and Signal Processing, Minneapolis, July, 1993 https://doi.org/10.1109/ICASSP.1993.319876
  5. G. Jung, K. Yim, J. Jung, J. Shin, K. Choi, D. Kim and J. Shim, V.Chow(ed.), 'An Imprecise DCT Computation Model for Real-Time Applications,' Multimedia Technology and Applications, Springer, Dec., 1996
  6. J. Grass, and S. Zillberstein, 'A Value-Driven System for Autonomous Information Gathering,' J. Intelligent Information Systems, Vol.14, pp.5-27, March, 2000 https://doi.org/10.1023/A:1008718418982
  7. S. V. Vrbsky and J. W. S. Liu, 'APPROXIMATE-A Query Processor that Produces Monotonically Improving Approximate Answers,' IEEE Trans. Knowledge and Data Eng., Vol.5, No.6, pp.1056-1068, De., 1993 https://doi.org/10.1109/69.250091
  8. J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. S. Yu, J. Y. Chung and W. Zhao, 'Algorithms for Scheduling Imprecise Computations,' IEEE Computer, Vol.24, No.5, pp.58-68, May, 1991 https://doi.org/10.1109/2.76287
  9. K. Choi, G. Jung, 'Comment on On-line Scheduling Policies for a Clas of IRIS Real-Time Tasks,' IEEE Trans. Computers, Vol.50, No.5, pp.526-528, May, 2001 https://doi.org/10.1109/12.926165
  10. G. Jung, T. Kim, S. Park, and K. Choi, 'A Low Complexity Dynamic Sceduling Algorithm for Real-Time Tasks,' IEE Electronic Letters, Vol.35, No.24, pp.2106-2108, Nov., 1999 https://doi.org/10.1049/el:19991417
  11. C. L. Liu and J. W. Layland, 'Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,' J. ACM, Vol.20, No.1, pp.46-61, Jan., 1973 https://doi.org/10.1145/321738.321743
  12. H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, 'Optimal Reward-based Scheduling for Periodic Real-Time Tasks,' IEEE Trans. Computers, Vol.50, No.2, pp.111-130, Feb., 2001 https://doi.org/10.1109/12.908988
  13. Jaehong Shim, Kangbin Yim, Kyunghee Choi and Gihyun Jung, 'An On-line Frame Scheduling Algorithm for the Internet Video Conferencing,' IEEE Transactions on Consumer Electronics, Vol.49, No.1, pp.80-88, Feb., 2003 https://doi.org/10.1109/TCE.2003.1205459