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ON GENERALIZED WEIGHT NASH EQUILIBRIA
FOR GENERALIZED MULTIOBJECTIVE GAMES

WonN Kyu Kim' AND XiE-PING DINGT

ABSTRACT. In this paper, we will introduce the general concepts
of generalized multiobjective game, generalized weight Nash equi-
libria and generalized Pareto equilibria. Next using the fixed point
theorems due to Idzik [5] and Kim-Tan [6], we shall prove the exis-
tence theorems of generalized weight Nash equilibria under general
hypotheses. And as applications of generalized weight Nash equi-
libria, we shall prove the existence of generalized Pareto equilibria
in non-compact generalized multiobjective game.

1. Introduction

Recently, the study of existence of Pareto equilibria in game theory
with vector payoffs has been extensively studied by a number of authors,
e.g., see [2-4, 7-12] and the references therein. The motivation for the
study of multicriteria models can be found in [2, 7] and the existence of
Pareto equilibria is one of the fundamental problem in the game theory.
In a recent paper [12], Yu and Yuan proved some existence theorems
of Pareto equilibria by using the fixed point theorem and the minimax
inequality; and hence they provided an unified study for the existence
of Pareto equilibria in multiobjective game under weaker conditions.
Those results further generalize the corresponding existence results of
Pareto equilibria given in the currently existing literatures. Also, in
recent papers [14, 15], Ding obtained some existence of equilibria for
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generalized multiobjective games by using some coercivity conditions
and quasi-variational inequalities.

In this paper, we will introduce the general concepts of generalized
multiobjective game, generalized weight Nash equilibria and generalized
Pareto equilibria. Next using the fixed point theorems due to Idzik [5]
and Kim-Tan [6], we shall prove the existence theorems of generalized
weight Nash equilibria under general hypotheses. And as applications
of generalized weight Nash equilibria, we shall prove the existence of
generalized Pareto equilibria in non-compact generalized multiobjective
game.

2. Preliminaries

We begin with some notations and definitions. Let A be a subset of
a topological space X. We shall denote by 24 the family of all subsets
of A and by A the closure of A in X. If A is a subset of a vector space,
we shall denote by co A the convex hull of A. If A is a non-empty subset
of a topological vector space X and S,T : A — 2% are correspondences,
then coT,T,TNS : A— 2% are correspondences defined by (coT)(z) =
coT(x),T(x) = T(z) and (T N S)(z) = T(z) N S(zx) for each = € A,
respectively.

Let X,Y be non-empty topological spaces and T : X — 2Y be a
correspondence. We may call T'(x) the upper section of T and T~ (y) :=
{z € X |y € T(x)} the lower sectionof T. Let X be a non-empty convex
subset of a vector space F and let f: X — R. We say that f is quasi-
convez if for each t € R, {z € X | f(z) < t} is convex; and that f
is quasi-concave if — f is quasi-convex. A correspondence 7' : X — 2V
is said to be upper semicontinuous if for each £ € X and each open
set V in Y with T'(z) C V, then there exists an open neighborhood U
of z in X such that T'(y) C V for each y € U; and a correspondence
T : X — 2Y is said to be lower semicontinuous if for each z € X and
each open set V in Y with T(z) NV # 0, then there exists an open
neighborhood U of z in X such that T(y) NV # () for each y € U. And
we say that T is continuous if T is both upper semicontinuous and lower
semicontinuous.

Next we recall the following continuity definitions of the real-valued
function. Let X be a non-empty subset of a topological space E and
f: X — R. We say that f is upper semicontinuous if for each t €
R, {z € X | f(z) >t} is closed in X, and f is lower semicontinuous if
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—f is upper semicontinuous. Hence if f is upper semicontinuous, then
the set {z € X | f(z) < t} is open for each t € R. And we say that f is
continuous if f is both upper semicontinuous and lower semicontinuous.

We also recall the following: let E be a Hausdorff topological vector
space. A set B C FE is said to be convezly totally bounded (simply,
c.t.b.) whenever for every neighborhood V of 0 € E, there exists a finite
subset {x; | i € I} C E and a finite family of convex sets {C; | 7 € I}
such that C; C V for each ¢ € I and B C {z; + C; | i € I}. Then
it is known that every compact subset of a locally convex Hausdorff
topological vector space is convexly totally bounded. For details, see
Idzik [5].

First, we shall introduce the generalized game with multicriterior (or
generalized multiobjective game ) in its strategic form of a finite (or
infinite) number of players G := (X;, F*,T;);c1, where I is a (possibly
uncountable) set of players, as follows: For each i € I, X; is the set
of strategies in a Hausdorff topological vector space E; for the player 1,
and F' : X = IL;c1X; — R* where k; € N, which is called the payoff
function (or called multicriteria) and T; : X — 2%¢, which is called the
constraint correspondence of the player 1.

If an action z := (z1,... ,2,) € X is played, each player i is trying to
find his/her payoff function F*(x) := (f{(z),. .., fi (x)), which consists
of noncommensurable outcomes under the possible constraint sets T;(z).
Here it should be remarked that in our constrained multiobjective games,
the other players can influence the j-th player

(1) indirectly, by restricting j’s feasible strategies to T;(z),

(2) directly, by affecting j’s payoff function F7.

Here it is noted that every action domain of the constraint correspon-
dence T} for each j € I is not the set X; but the whole strategy set X.
In fact, it is reasonable that everyone can choose a possible action in his
strategies which are affected by the other’s strategies depending on his
actions simultaneously; and this is different from the definitions of Ding
[14, 15] using different constraint correspondences.

Each player i has a preference ‘>=;’ over the outcome space R*:. For
each player ¢ € I, its preference ‘>;’ is given by

zltiz2 <= Zjl-ZZ-

J2 for every j=1,... ,k;,

where 2' = (z{,... 2 ) and 2% = (27,... , 2} ) are the elements in R¥:.
The players’ preference relations induce the preferences on X is defined
as follows:
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for each player ¢ and their choices z = (z1,... ,zn) and y = (y1,.-- ,Yn)
6 X’ . .
rriy < F(z)z F'(y)

Also we assume that the model of a game in this paper is a nonco-
operative game, i.e., there is no replay communicating between players,
and so players act as free agents, and each play is trying to minimize
his/her own payoff according to his/her preferences and constraints.

For the games with vector payoff functions (or multicriteria) it is
well-known that in general, there does not exist a strategy £ € X to
minimize (or equivalently to say, maximize) all f}s for each player 7 in
his/her constraint, e.g., see [11] and the references therein. Hence we
shall need some solution concepts for generalized multicriteria games.

Throughout this paper, for each m € N, we shall denote by RT* the
non-negative orthant of R™, i.e.,

R} :={u=(u1,... ,um) ER™ |u; 20 Vj=1,...,m},

so that the non-negative orthant R} of R™ has a non-empty interior
with the topology induced in terms of convergence of vectors respect to
the Euclidean metric. That is, we shall use the notation

int RT :={u=(u1,...,um) ER™ |u; >0 Vj=1,...,m}.

For each i € I, denote X; := ILicpn (3 X;. If z = (z1,...,2,) € X,
we shall write z; = (z1,...,%i—1,Zit1,...,2n) € X;. If 2; € X; and
z; € X;, we shall use the notation (z;,2;) := (1,... ,Tie1, Tis Tig1,. -+
zn) =z € X. For each u, v € R™, u-v denote the standard Euclidean
inner product.

Let Z = (Z1,... ,%n) € X; then we will introduce the following gen-
eral equilibrium concept of a generalized multiobjective game:

DEFINITION 1. A strategy Z; € X; of the player ¢ is said to be a gener-
alized Pareto efficient strategy (respectively, generalized weak Pareto ef-
ficient strategy) of a game G = (X;, F*, T;);cr respect to T if Z; € T;(Z)
and there is no strategy z; € T;(Z) such that

F'(%)—F'(%;,z;) € R¥\{0} (respectively, F'(Z)—F"(z;,z;) € int R%).

Then a strategy T € X is said to be a generalized Pareto equilib-
rium (respectively, generalized weak Pareto equilibrium) of a game G =
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(Xi, F*, T;)ier if, for each player i, Z; € X; is a generalized Pareto ef-
ficient strategy (respectively, generalized weak Pareto efficient strategy)
respect to Z.

The above definition generalizes the corresponding definitions in [9,
10, 12]. And Definition 1 is different from the definition of Ding [14, 15]
using different constraint correspondences.

From the above definition, it is clear that every generalized Pareto
equilibria is a Pareto equilibria when the constraint set is fixed with
Ti(x) = X, for each ¢ € X and ¢ € I. And it is also clear that a
generalized Pareto equilibria is a generalized weak Pareto equilibria,
and in turn also a weak Pareto equilibria. However the converse is not
always true, e.g., see [12].

We also introduce the following definition which generalizes the defi-
nition in [9]:

DEFINITION 2. A strategy Z € X is said to be a generalized weight
Nash equilibrium respect to the weight vector W := (Wy,... ,W,) of a
game G = (X;, F*, T;);er, if for cach player ¢ € I,

(1) z; € T;(Z);

(2) Wi € RE\ {0};

(3) Wi - Fi(z) < W, - F{(z;,%;) for each z; € T;(Z).

In particular, when W; € Tfi for all i € I, the strategy ¥ € X is said
to be a normalized form of generalized weight Nash equilibrium respect
to the weight W, where Tf" is the standard simplex of R¥:, i.e.,

ki
T_’lfi ={u=(u1,...,ux,) € ]Rli" | Zuj =1}
j=1

For each i € I, let W; € R% \ {0} be fixed. Then, from the above
definitions, it is easy to see that a strategy T € X is a generalized weight
Nash equilibrium respect to the weight vector W := (Wy,... ,W,,) of a
game G = (X;, F!,T;);er, if and only if for each ¢ € I, Z; is an optimal
solution of the following vector optimization problem:

in W, FiZ:,x;
(n ) Wi (&, 2:)

3. Existence of generalized weight Nash equilibria
In order to obtain the existence of generalized weight Nash equilibria

and generalized Pareto equilibria, we shall need some fixed point theo-
rems or minimax inequalities as efficient proving tools. First we shall



888 Won Kyu Kim and Xie-Ping Ding

investigate the existence theorems of generalized weight Nash equilibria
under general hypotheses by using the fixed point theorems due to Idzik
[5] and Kim-Tan [6]. And in the next section, we shall show that gener-
alized Pareto equilibria problem can be reduced to the study of gener-
alized weight Nash equilibria under suitable conditions in non-compact
generalized multiobjective game.

Now we discuss the existence of generalized weight Nash equilibria as
application of fixed point theorem as follows:

Foreachi =1,...,n, W; € R’jj \ {0} and z = (z1,...,Zn),y =
(¥1,-..,Yn) € X. Define two correspondences S : X x X — R and
MY . X — 2% by

i=1

and

MY (z) :={y € T(z) | SW(z,9) = min SY(z, )},

where T'(z) = IL;¢;Ti(z), for each (z,y) € X x X.

Then we prove that the existence of generalized weight Nash equilibria
is equivalent to the existence of fixed points for the correspondence M"
as follows:

LEMMA 1. Let I be a finite set of players, and let G = (X;, F*, T;)ie1
be a generalized multiobjective game. Suppose that for eachi € I, W, €
Rfj \ {0}. A strategy T € X is a generalized weight Nash equilibrium
respect to the weight W = (W1,... ,W,,) of the game G if and only if
Z € X is a fixed point of the correspondence MW .

Proof. <: By the definition of MW z € T(Z) and
SW(z,z) < SW(z,y), forall yeT(z).

That is, for each ¢ € I,
n
> Wi FYZ1,...,%io1, 86, Big1, - . Tn)
=1

n
< ZWZ 'Fz(ifl,... s Tic1,Yiy Tigly--- ,a':n)
i=1
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for all y; € T(Z). Since 7 is the fixed point for MW, we have z € T(z). If
we choose any action y having the form y = (Z1,... ,Zi—1, ¥, Tit1,- .- »
Z,) € T(Z), then

Wi F'(%;,%) < min Wi F'(;,:);
y: €T3 (Z)

and hence for all y; € T;(Z), we have
Wi FUZ1,... \Tio1, T, Tig1se-r »Tn)
< Wi FY &1, ..., Tie1, i, Tig1y .- »Tn).
Therefore we have that for each i € I,
W; - Fi(Z1,... ,Zn)
<W;-FYZ1,... ,Zi 1,ViyTiz1, ... »Zn) for all y; € T;(Z).

Therefore T is the generalized weight Nash equilibrium respect to the
weight W.

= Suppose that Z is the generalized weight Nash equilibrium respect
to the weight W. Then Z € T(z) and W; - F¥(z) < W; - F¥(Z;,y;) for
each y; € T;(Z); and hence we have

zn:Wi-Fi(a‘cl,... yZn)
i=1

SZWZ Fz(jla 7i'i—1’yiaji+l7"' 7jn) for all ye T(j)

i=1

By the definition of the correspondence MW, we conclude that 7 is a
fixed point of the correspondence M". This completes the proof. [

REMARKS. (1) Lemma 1 generalizes the corresponding Lemma 2.3 in
[9]. And Lemma 1 enables us to investigate the generalized weight Nash
equilibria by using appropriate fixed point theorems.

(2) In Lemma 1, the set of players is finite. However, if the conver-
gence is well equipped in strategy sets (e.g., X; is a subset of an [ space
with inner product), then the infinite set of players is possible.

Before proving existence theorems of generalized weight Nash equi-
libria, we shall need the following general fixed point theorems of two
different types.

We begin with the following particular form of Idzik’s theorem (5,
Theorem 4.3]:
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LEMMA 2 [5]. Let X be a convex subset of a Hausdorff topological
vector space E. Let T : X — 2% be an upper semicontinuous corre-
spondence such that T(z) is non-empty closed convex for each z € X.
If T(X) is a compact and convexly totally bounded subset of X, then
there exists a point £ € X such that & € T(&).

LEMMA 3 [6]. Let X be a non-empty convex subset of a Hausdorff
topological vector space E and D be a non-empty compact subset of X.
Let T : X — 2P be a correspondence satisfying the following:

(1) foreach z € X, coT(z) C D;

(2) for each y € X, T~ Y(y) is open in X.

Then there exists a point & € X such that & € coT(%).

Now we are ready to prove the existence theorem for a generalized
weight Nash equilibria in a general Hausdorff topological vector space.

THEOREM 1. Let I be a set of finite number of players and let G =
(X, F', T;);cs be a generalized multiobjective game, where for each i €
I, X; is a non-empty convex subset of a Hausdorff topological vector
space E; and D; be a non-empty compact subset of X;. LetT; : X —
2P is a continuous constraint correspondence such that each T;(z) is
a non-empty closed convex subset of D; and D = [[,c; D; is c.t.b. in
E = [l;c; Es. If there exists a weight vector W = (Wh,... ,W,) with
W; € R¥ \ {0} for each i € I such that

(1) the correspondence SV is jointly continuous on X x X;

(2) SW (z,) is quasi-convex on X for each fixed z € X.

Then there exists a generalized weight Nash equilibrium ¥ € X for
the game G respect to the weight vector W = (Wy,... ,W,).

Proof. We shall apply Lemma 2 to the correspondence MW : X —
2% defined by

MY (z) = {y € T(2) | $¥(z,9) = i SY (2, )},

where T(z) := ILie; Ti(z) and SY(z,y) := Y et Wi Fi(xg,yi), for
each z,y € X. Then it suffices to show that the correspondence MW :
X — 2% is upper semicontinuous such that each MW (z) is a non-empty
closed convex subset of D, where D = Il;c;D;. Since SW is jointly
continuous on X x X, and SW(z,-) is quasi-convex on X, it is easy to
see that each M" (z) is a non-empty closed convex subset of D. Also
note that since D is a compact and convexly totally bounded subset
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of X and T(z) € D, T(X) C D C X is also a compact and convexly
totally bounded subset of X. And, by Proposition 2.5.3 in [1], MW
is clearly upper semicontinuous. Therefore, by Lemma 2, M" has a
fixed point Z. € X. Thus, by Lemma 1, T is the desired generalized
weight Nash equilibrium for the game G respect to the weight vector
W = (Wh,...,W,). This completes the proof. O

Next, we shall prove a generalized weight Nash equilibrium in a Haus-
dorff topological vector space without assuming the local convexity of
the constraint sets. Before proving this, we shall need the following:

LEMMA 4. Let X,Y be Hausdorff topological vector spaces and X
be compact. Let T : X — 2Y be a continuous correspondence such that
each T'(z) is a non-empty compact subset of X, and let f : X xY — R
be a continuous function on X x Y.

Then the function ¢ : X — R, defined by

¢(z) := inf f(z,u), foreach z € X,
u€T(z)

is a continuous function on X.

Proof. By Theorem 2.5.1 in [1], ¢ is upper semicontinuous; and by
Theorem 2.5.2 in [1], ¢ is lower semicontinuous. Thus ¢ is a continuous
function on X. O

Now we prove a generalized weight Nash equilibrium in a general
Hausdorff topological vector space as follows:

THEOREM 2. Let I be a set of finite number of players and let
G = (X;,F',T})ic1 be a generalized multiobjective game, where for
each i € I, X; is a non-empty compact convex subset of a Hausdorff
topological vector space F;. LetT; : X — 2%i be an upper semicon-
tinuous constraint correspondence such that each T;(z) is a non-empty
closed convex subset of X; and T, '(y;) is (possible empty) open in X
for each y; € X;. If there exists a weight vector W = (Wy,... ,W,)
with W; € R \ {0} such that for each i € I,

(1) (z,y) — W; - F*(x;,y;) is jointly continuous on X x X;

(2) y — W; - F'(x;,y;) is quasi-convex on X for each z; € X;.

Then there exists a generalized weight Nash equilibrium & € X for
the game G respect to the weight vector W = (W1,... ,W,).
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Proof. For each k € N, we define a correspondence Sj, : X — 2% by

) . 1
Sk(x) == ier{y; € Ti(x) | W, - F'(x;,y;:) < uIETlTlI%z) Wi - F*(x;,u) + E}’

for each = € X. Then we have that for each z € X,

Sk(x) = Iier (Ti(z) N{y: € Xi | Wi - F'(z3, )

; 1
< in Wi F*(z;,w) + — >,

and each Sk(z) is non-empty convex by the assumption (2). Note that
for each y € X, we have

St (y) ={z € X | y € Sk(2)}
- {m € X |y € Wier{y: € Ti(z) | W; - F'(;, )
. iy L
< gin, WP+ )
={r € X |y € Ti(z) and W;- F'(z;, ;)

. 1
< min W;: F'(z;,u;) + % for each i € I}

u; €T (x)
= (ﬂTi_l(yi))ﬂ(ﬂ{m € X |W;- F'(z;,u)
il iel
< min W;- F'(z;,u;) + 1})

u; €T (x) E

Using Lemma 4, we can obtain S, (y) is open in X by the continuity
assumption (1) and the open lower section assumption on T;. Therefore
the whole assumptions of Lemma 3 are satisfied, so that Sy has a fixed
point (k) € X. From the definition of Sk, it follows that for each i € I,

. ) 1
;- F(z; i i i Pz (k), wi) + 7.
W, - F*(z;(k), z;i(k)) < uie%%g(k)) W, - F*(z;(k), u;) + k

Here we note that since each 7; has open lower sections, T; is lower
semicontinuous, and so the correspondence T; must be continuous. Since
X is compact, we can assume that the sequence {z(k)} in X converges
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to £ € X without loss of generality. Since z;(k) € T;(z(k)) and T; is
continuous for each i € I, we have Z; € T;(Z) for each ¢ € I.
By the assumption (1) and Lemma 4 again, we have that

W; - F'(Z;,%;) = Jim W - F'(z;(k), zi(k))

< lim min W;- Fi(x;(k),ui)
k—oo uiETi(z(k))

= min W;- F'(Z;,u;).
u, €T5(Z)

Therefore we have

n

> W FZ1,... &) < min_ W; - F*(E;, us).
pae Pt u; €T5(Z)

Thus % is a generalized weight Nash equilibrium for the game G respect
to the weight vector W = (W1q,... ,W,). This completes the proof. [I

It is clear that Theorem 2 is closely related to Theorem 1 as a special
case of the continuity and convexity of the mapping S" in Theorem 1.
In fact, the correspondence S* in Theorem 1 automatically satisfy the
continuity assumption by the corresponding hypothesis (1) of Theorem
2: however the converse does not hold in general.

Our Theorems 1 and 2 generalize the corresponding results in [9, 12]
in several aspects as follows:

(1) when the constraint correspondence T is constant, i.e., T;(z) = X;
for each ¢ € I and x € X, Theorem 1 reduces to the corresponding
Theorem 1 in [12], and so the corresponding theorems in [9] can be
obtained;

(2) the strategy set X; need not be compact as in the corresponding
theorems in [12] nor X; need not be a subset of a normed linear spaces
as in [9].

As we have seen, we have proved two existence results of generalized
weight Nash equilibria as applications of fixed point theorems, and those
results can be useful in showing the existence of equilibrium actions
under the appropriate constraint sets.

The following lemma is an easy consequence of the quasi-variational
inequality due to Yuan-Tarafdar [13], and it is the basic tool for proving
the existence of generalized weight Nash equilibria:
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LEMMA 5. Let X be a non-empty compact convex subset of a Haus-
dorff topological vector space E which has sufficiently many continuous
linear functionals. Let T : X — 2% be an upper semicontinuous corre-
spondence such that each T'(z) is a non-empty closed convex subset of
X. Let ¢ : X x X — R be a function such that

(1) for each fixed y € X, x — ¢(z,y) is lower semicontinuous;

(2) for each fixed xz € X, y— ¢(z,y) is quasi-concave;

(3) the set { x € X | supyer(y) ¢(z,y) <0} is closed in X.

Then there exists a point £ € X such that

zeT(z) and sup ¢(Z,y) < 0.
yeT(2)

We also need the following lower semicontinuity property:

LEMMA 6. Let X,Y be Hausdorff topological vector spaces and X
be compact. Let T : X — 2¥ be a lower semicontinuous correspondence
such that each T(x) is a non-empty subset of Y, and let f : X xY — R
be a lower semicontinuous function on X x Y. Then the function ¢ :
X — R, defined by

¢(z) := sup f(z,y), foreach z € X,
yeT(z)

is a lower semicontinuous function on X.

Proof. By applying Theorem 2.5.2 in [1] to —f, we can obtain the
conclusion. (|

Now we will prove an existence theorem of a generalized weight Nash
equilibrium as follows:

THEOREM 3. Let I be a set of finite number of players and let
G = (X;, F',T;)icr be a generalized multiobjective game, where for
each 1 € I, X; is a non-empty compact convex subset of a Hausdorff
topological vector space E; which has sufficiently many continuous linear
functionals. Let T; : X — 2% be a continuous constraint correspon-
dence such that each T;(x) is a non-empty closed convex subset of X;.
If there exists a weight vector W = (W1,... ,W,,) with W; € R% \ {0}
such that for each i € I,

(1) for each y; € X5, ©+— ),
ous on X;

(2) for each z; € X;, y+— > ic; Wi - F'(z;,y:) Is quasi-convex on X;

.e1 Wi - F'(z;, ;) is upper semicontinu-
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(3) (z,y) — ;e Wi - Fi(z;,y;) Is jointly lower semicontinuous on
X xX.

Then there exists a generalized weight Nash equilibrium z € X for
the game G respect to the weight vector W = (W1, ... ,W,).

Proof. In order to apply the quasi-variational inequality, we first de-
fine a real-valued function ¢ : X x X — R by

o(z,y) ZW (F'(z;,z;) — F'(x;,v:)), foreach (z,y) € X x X.
el

Then by the assumptions (1) - (3) and the fact that finite sum of lower
semicontinuous functions is also lower semicontinuous, we can have

(a) for each fixed y € X, z + ¢(z,y) is lower semicontinuous;

(b) for each fixed z € X, y +— ¢(z,y) is quasi-concave.

Since the correspondence T'(z) := IL;c;T;(z) is lower semicontinu-
ous and the map ¢ is jointly lower semicontinuous, by Lemma 6, the
map & + SUP,cr(z) $(T,y) is lower semicontinuous and hence the set
{z € X | supyer(s) #(z,y) <0} is closed in X. Therefore the whole
assumptions of Lemma 5 are satisfied, and so there exists a point 7 € X
such that

Z € T(z) and ¢(Z,y) = Y Wi+ (F'(%;,%) — F'(F;, %)) <0

icl

for all y € T(Z). Then for each i € I and every (&;,y;) € T(Z;,7;), we
have W - F'(z;, 7;) ~ W; - F*(%;,y;) < 0; which implies that for each
i€l, z; € T;(Z) and

W; - F'(Z:,%;) = min W, F{(z;,y
(Z;,7:) = o (Z;, yi)-

Thus Z is a generalized weight Nash equilibrium point of the game G
respect to the weight vector W. O

REMARKS. (1) Theorem 3 generalizes the corresponding results in [9,
10, 12]. In fact, when the constraint correspondence 7T} is constant, i.e.,
Ti(z) = X; for each i € I and z € X, our Theorem reduces to the
corresponding Theorem 1 in [12], and so the corresponding theorems in
[9, 10] can be obtained.

(2) We can obtain the existence of equilibria for generalized multi-
objective games by using some coercivity conditions; and in this case,
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we can assure that the strategy set X; need not be compact as in the
corresponding theorems in [12] nor X; need be a subset of a normed
linear spaces as in [9, 10].

(3) In recent papers [14, 15], Ding obtained some existence of equilib-
ria for generalized multiobjective games by using some coercivity condi-
tions and quasi-variational inequalities, and those results are comparable
to our existence results in this paper.

It is well-known that fixed point technique has wide applications in
the study of economics and optimizations, e.g., see (7-12]. On the other
hand, in a recent paper [12], Yu and Yuan proved the existence of weight
Nash equilibria and Pareto equilibria by using Ky Fan’s minimax in-
equality, which would not be widely used before as an efficient tool for
investigating the equilibria in economics and optimizations. Further-
more, in this paper, it is our purpose to present how the quasi-variational
inequality can be applied to the existence of generalized weight Nash
equilibria, and this method can be considered as an efficient tool for the
equilibrium theory.

4. Existence of generalized Pareto equilibria

In this section, as applications of generalized weight Nash-equilibria,
we shall derive some existence theorems of generalized Pareto equilibria
for generalized multiobjective games.

We now prove the following:

LEMMA 7. Let I be a finite set of players, and let G = (X;, F*, T})ic1
be a generalized multiobjective game. Suppose that foreachi € I, W, €
Tf. Then a normalized form of generalized weight Nash equilibrium
% € X respect to the weight W = (Wy,... ,W,) € Til X fo” (resp.,
W € int Tfl X -+ X int Tf_") is a generalized weak Pareto equilibrium
(resp., a generalized Pareto equilibrium) of the game G.

Proof. Suppose the contrary, i.e., Z is not a generalized weak Pareto
equilibrium. Then there exists some ¢ € I and an z; € T;(Z) such that

F(z) — F'(Z;,2;) € int RS
Since W; € T and W; € R* \ {0}, we have

W, - F{(z) - W; - F'(Z;,z;) > 0,
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which contradicts the fact that T is a normalized form of generalized
weight Nash equilibrium respect to the weight W = (Wy,... ,W,).
Therefore Z is a generalized weak Pareto equilibrium.

Next, we assume that W, € intT f for every ¢ € I. Suppose that Z is
not a generalized Pareto equilibrium; then there exists some ¢ € I and
an x; € T;(Z) such that F*(z)—F'(Z;,z;) € R¥\ {0}. Since W; € int T
and W; € R% \ {0}, we can also have

W; - F{(z) — W; - F'(z;,2;) > 0;
which contradicts the definition of the corresponding generalized weight
Nash equilibrium respect to the weight W = (W,... ,W,,). Hence % is

a generalized weak Pareto equilibrium of the game G = (X, F*, T})ie;-
This completes the proof. O

REMARKS. It should be noted that the conclusion of Lemma 7 still
hold true when Z is a generalized weight Nash equilibrium respect to
the weight W = (W1,... ,W,) satisfying that W; € R* (resp., W; €
int R’j_’) for each i € I. Also it should be noted that the converse of
Lemma 7 is not true in general, i.e., a generalized Pareto equilibrium is
not necessarily a generalized weight Nash equilibrium (e.g. see [9, 12]).

By combining Lemma 7 and Theorem 2, we can obtain the following
existence of a generalized Pareto equilibria for generalized multiobjective
games in general Hausdorff topological vector spaces:

THEOREM 4. Let I be a set of finite number of players and let
G = (X;,F",T})ic1 be a generalized multiobjective game, where for
each 1 € I, X; is a non-empty compact convex subset of a Hausdorff
topological vector space F;. LetT; : X — 2X: be an upper semicon-
tinuous constraint correspondence such that each T;(z) is a non-empty
closed convex subset of X;, and T; '(y;) is (possible empty) open in X
for each y; € X;. If there exists a weight vector W = (W1,... ,W,)
with W; € R¥ \ {0} such that for each i € I,

(1) (z,y) — W; - F*(z;,y;) is jointly continuous on X X X;

(2) y — W; - F¥(z;,y;) is quasi-convex on X for each z; € X;.

Then there exists a generalized weak Pareto equilibrium & € X for
the game G respect to the weight vector W = (Wy,... ,Wy).

Furthermore, if W; € int Tjﬁ" for all i € I, then the equilibrium T
is a generalized Pareto equilibrium respect to the weight vector W =
(W1,... , Wa).

As an immediate consequence of Theorem 4, we have the following
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THEOREM 5. Let I be a set of finite number of players and let
G = (X;, F*,Ti)ic1 be a generalized multiobjective game, where for
each i € I, X, is a non-empty compact convex subset of a Hausdorff
topological vector space E;. Let T; : X — 2%i be an upper semicon-
tinuous constraint correspondence such that T, (y;) is (possible empty)
open in X for each y; € X;. Assume that for each i € I,

(1) f} is jointly continuous on X x X;

(2) for each x; € X;, fi(;,-) is convex on X;; .

Then there exists a generalized Pareto equilibrium z € X for the
game G.

Proof. Take any fixed weight vector W = (W1,... ,W,), where W; €
int 7% for all ¢ € I. Since Fi(z) = (fi(z),..., fi (z)) for each z € X
and i € I, by the assumptions (1) and (2), it is easy to see that all
the hypotheses of Theorem 2 are satisfied. Therefore the game G has a
generalized weight Nash equilibrium Z respect to the weight vector W.
Since W; € int T’ f for all ¢ € I, by Lemma 7, Z is a generalized Pareto
equilibrium for the game G. This completes the proof. a

Following the method in [15], we can further unify and generalize the
above results in this paper to non-compact generalized multiobjective
games in H-spaces without assuming the linear structure.
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