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THE EXISTENCE OF PERIODIC SOLUTION OF A
TWO-PATCHES PREDATOR-PREY DISPERSION
DELAY MODELS WITH FUNCTIONAL RESPONSE

ZHENGQIU ZHANG AND ZHICHENG WANG

ABSTRACT. In this paper, a nonautonomous predator-prey disper-
sion delay models with functional response is studied. By using the
continuation theorem of coincidence degree theory, the existence of
a positive periodic solution for above models is established.

1. Introduction

For many species spatial factors are important in population dynam-
ics, as discussed by many authors. The theoretical study of spatial dis-
tribution can be traced back at least as far as Skellem [17], and has been
extensively studied in many papers (for example in [6, 9, 10, 11, 13, 14,
18] and references cited therein). Most of the previous papers focused on
the coexistence of populations modelled by systems of ordinary differ-
ential equations and the stability (local and global) of equilibria. Many
existing models deal with a single population dispersing among patches.
Some of them deal with competition and predator-prey interactions in
patchy environments.

On the other hand, the effect of the past history on the systems’
stability is also an important problem in population biology. Recently
persistence and stability of a population dynamical system involving
time delays have been discussed by some authors (for example (7, 8, 12]
and references cited therein). They obtained some sufficient conditions
that guarantee permanence of population or stability of positive equi-
libria or positive periodic solution. Song and Chen (15, 16] extended
the autonomous Lotka-Volterra system to a two species nonautonomous
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dispersion Lotka-Volterra system, and they investigated persistence of
the populations and periodic behavior of the system.

In this paper, we consider a nonautonomous predator-prey dispersion
delay models with functional response.

(1.1)
[ 21(®) = 1(t) [b1(®) — ar (2 () — 2L + Di(B)lma(t) — 1 (1),

z5(t) = za(t)[b2(t) — az(t)z2(t)] + Da(B)[a(t) — 22(1)),

%

. k1(#)d1 ($)xy (=71 (1 (), xz2(t) do(8)2(t)
y'(t) = y(t) [—bg(w — ag(t)y(t) +EDRUnl-n Ga Ol _ C;giy(t)] ,

| 2/(6) = 2(0) [~0al) = aa(t)a(r) + B20aOM0-mtat))]

where z1(t),y(t) and z(¢) are the densities of prey species z and predator
species y and z in patch I at time ¢ respectively; zo(t) is the density
of prey species z in patch II in time £. Predator species y and z are
both confined to patch I, while prey species z can disperse between two-
patches. D;(t)(i = 1,2) are dispersion coefficients of species z. Species
z is the prey of species y, while species y is the prey of species z, then
a biological food chain is founded.

Our purpose in this paper is, by using the continuation theorem which
was proposed in [2, 3], to study the existence of positive periodic solu-
tion of system (1.1). Moreover, since, at present, there are only a few
papers which have been published on the existence of periodic solutions
of state dependent delay differential equations (say, [19] and references
cited therein). We also use the same method to study the existence of
periodic solutions of system (1.1). For the work concerning the existence
of periodic solutions of delay differential equations which was done by
using coincidence degree theory, we refer to [4, 5] and reference cited
therein. :

2. Main result

In this section, based on the Mawhin’s continuation theorem we shall
study the existence of at least one positive periodic solution of system
(1.1). First, we shall make some preparations.

Let X and Y be real Banach spaces, L :DomL C X — Y a Fredholm
mapping of index zero and P : X — X, Q : Y — Y continuous pro-
jectors such that ImP =KerL, Ker) =ImL and X =KerL&KerP,Y =
ImL@ImQ). Denote by L, the restriction of L to DomLNKerP, K,: ImL
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— KerPNDomUL the inverse (to L,) and J :Im@Q —XKerL an isomorphism
of Im() onto KerL.

For convenience of use, we introduce the continuation theorem [2,
p.40] as follows.

THEOREM A. Let Q@ C X be an open bounded set and N : X — Y
be a continuous operator which is L-compact on Q (i.e. QN : Q — Y
and Kp(I — Q)N : Q — Y are compact). Assume

(a) for each A € (0,1), z € QN DomL, Lz # ANz;
(b) for each z € 9QNKerL, QNz # 0;

(c) deg{JQN, QN KerL,0} # 0.

Then Lz = Nz has at least one solution in N DomL.

In what follows we shall use the notations:
— 1 [
== t)dt, f' = mi B, fM = ),
F= [ @t s = min (1@ £ = max 1760

where f is a continuous w-periodic function.

In system (1.1), we always assume the following.

(H1)  bi(2), a;(t)(¢ = 1,2,3,4), di(t), ci(t), ki(t) and D;(£)(i = 1,2)
are positive periodic continuous functions with period w > 0.

(H2)  7i(t,z1(t), z2(t)) and 72(t,y(t)) are both continuous and w-
periodic with respect to t.

We are now in a position to state and prove our main result.

THEOREM 2.1. In addition to (H1) and (H2), assume the following:
(H3) ab(by — D1)! > dM (kydy)M;

(H4) (by — Da)! > 05

(H5)

(kldl)l[aé(bl - Dl)l - d{”(kldl)M]
allabel + (by — Di)lal
b ad (abed! + (kid)™) | . . Y (kodo)M
; +oy + 2

Then system (1.1) has at least one positive w-periodic solution.
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Proof. Consider the following equations:
(2.1)
et (t) u —u
(440 = by () - Di(t) — ar(t)enr®) — BT 4 Dy (1)er ),

22l = by(t) — Ds(t) — az(t)e™®) + Da(t)emalh),

|

By (B)dy (g1t B 2 gy (gena®)

dus(t) _ wua(t
i = —ba(t) — as(t)e s 1 (8)+eut (-1 (2 100 W2y T ep()+eus®?
ug(t—rg(t,e¥3(t)))
dug(t) _ _ ug(t) 4 ka(t)dg(t)e 3t Talte™
L 4t) — _py(t) — ay(t)ers® + PSP O T

where b;(t),a;(t)(i = 1,2,3,4), di(t),c;(t), ki(t) and D;(t) (i = 1,2) are
the same as those in (H1), and 7 and 73 are the same as those in
(H2). It is easy to see that system (2.1) has one w-periodic solution
(), u3(8), w3(8), wi(H)T, then (2} (8), w3 (1), v* (8), #* ()T =(explu (1),
explus(t)], explu}(t)], exp[u}(t)])T is a positive w-periodic solution of sys-
tem (1.1). So, to complete the proof, it suffices to show that system (2.1)
has one w-periodic solution.

In order to apply the continuation theorem of coincidence degree
theory to establish the existence of w-periodic solution of system (2.1),
we take

X =Y = {(ua(t), ua(t), us(t), ua(t))” € C(R,R*):
ui(t —|-’UJ) = u,-(t),i = 1,2,3,4}

and
4
1 (ua (), ua(t), wa(t), ua ()T = ) max fui(t)],
=1 te[0,w]
here, |- | denotes the Euclidean norm. With this norm || - ||, X is a

Banach space. Set
L : DomLNX, L(ul (t)’ U’Q(t)v U3(t), u4(t))T = (ull (t), UIZ(t)’ Ué(t), ui}(t))Ta
where DomL = {(u(t), u2(t), us(t), us(t))T € C}(R,R*)},and N : X —

)

bi(t) — Dy (t) — ar(t)em®) — diers) Dy (t)ev=(O—u(®

“ e1(t)+eu1(t)

u1 bo(t) — Da(t) — a2(t)euz(t) + Dg(t)eul(i)ﬂiz(t)
V)~ £ ki(@)di(t)er1tmmieet1(0.eu2)) g s ()

U3 —b3(t) — az(t)e*>® + 1cl(t)1-}»eu1(t_,—l(t’eul(t)‘eu2(t))) _ CQ%t)-{-e“:}(t)
: ka(t)da (t)e s (t= 2 (te¥3(D)

—by(t) — aq(t)en® +

ca(t)+eua(t—r2(t.e3(t)))
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Define two projectors P and Q as

U Ul #}‘ 1(t)dt Ui
U2 U = (t)dt Uy
p = = % , €X.
U3 Q U3 %fo 3(t)dt U3
Ug Uq I—U-fw uq(t)dt Ugq

Clearly, KerL = R, ImL = {(w1(t),us(t),us(t),us(t))T € X
Jo wi(t)dt = 0,i = 1,2,3,4} is closed in X and dimKerL = codimImL
= 4. Therefore L is a Fredholm mapping of index zero. Furthermore,
through an easy computation we find that the inverse K, of L, has the
form

Ky, : ImL — DomL N KerP

U1 fO Uy (s)ds — fow fO (t)dt
u fo uz(s)ds — 3 fo Jo ua(t)d
us fo u3($)ds —wlo Jou (t)dt
U4 J ua(s)ds — 2 I S ualt)at

We can prove that QN and Kp(I — Q)N are continuous by Lebesgue
convergence theorem and that QN(Q), K,(I — Q)N (Q) are relatively
compact for any open bounded set (. Therefore N is L-compact on

Q for any open bounded set 2 C X. Corresponding to the operator
equation Lz = ANz, X € (0,1), we have

[\V]

Kp

(2.2)
[€2]
[ 430 = [0 - Di(t) ~ ar(t)e(® — SO 4 by ()era0-0]
dug(t

= A[b2(t) — Da(t) — az(t)e>(®) + Dy(t)emr(I-w)]

dt

up(t—ry (t,e¥1(8) cu2(t)y)

i

u1(i),EU2(t)))

J dus(t) _ _ uz(¢) o ki(t)da(t)e

3 = A= (1) - aa(f)ews(® 4 aldgent
_ da(g)era®®

ca(t)Fevs(t) |?

ug(t-ro(t,e¥3(t)y)
) 2

ea(t)+evalt=T2(t,e™3()))

2240 — | -bu(0) — at)e ) + B0
Suppose that (u1(t), uz(t), us(t),ua(t))T € X is a solution of system
(2.2) for some X € (0,1). Choose ¢; € [0, w] such that

(t;) = (1), i=1,2,3,4.
u;(t;) trer[lgx] ui(t), 1

El

Then it is clear that u(¢;) =0, =1,2,3,4.
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From this and system (2.2), we obtain
(2.3)

U‘S(tl
bl(tl)—Dl(tl)——al(tl)eu1(t1) d1(t1)e

A 4Dy (¢ uz(t)-ui(t1) —
ci(th) + ERCYR itr)e
(24)  ba(ta) — Dafts) — ag(ta)e***?) + Da(ty)e1 (2 %22) = g,

ky (ts)dy (t3)eut (ta—a(ta .1 (1) e2(0a)))
+ eui(ta—T1(ta,ev1(83) gu2(ta)))

_ _ ug(ts)
oy e )

dz(t3)€u4(t3) _
ca(ts) + evalta) —

and

ko (t4)day () evs(ta—Ta(tacs )

_ _ ug(ts)
(2.6) ba(ts) — asta)e + co(ts) + eus(ta—m2(tq,ev3(t4)))

Multiplying (2.3) by e¥1(t1) gives

al(tl)eQU1(t1) < (bi(t1) — Dl(tl))eul(t1)+D1(t1)e“2(t1)’
that is
(2.7) ahe?r ) < (b — Dy)Mem1 () 4 DY eratta),
Thus

[T

2aie“ (") < (by — D)™ + {[(bl — D))M)? + 44\ D{e “2(t2)}
from which, by using inequality
(2.8) (a+b)3 < aZ +b2, for a>0,b>0,

it implies that

(2.9) Leu®) < (b — +\/dl DM 52

Multiplying (2.4) by e¥2(2) a parallel argument to (2.9) gives

(2.10) alzeuz(tZ) < (bg — Dz)M + DM - (t )
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Substituting (2.10) into (2.9) gives

lDM u(ty) %
afert ™) < (by — DM + alall {(bZ — Do)™ + \Jab DY ™ ]
2

‘DM up ()
< (b1 — DM a1 [ by — DM 4 &gl DM =5 }’
(b1 1) alz \/( 2 2) \/(12 2 €

from which, it follows that there exists a positive constant p; such that
(2.11) et < ).

Substituting (2.11) into (2.10), it follows that there exists a positive
constant pg such that

(2.12) ev2t2) < 4y,
From (2.5) and (2.6), we obtain

(2.13) aée“3(t3) < a3(t3)6“3(t3) < (kldl)M
and
(2.14) bt < a4(ty)e™ ) < (kody)M.
Therefore for Vt € [0, w],
(2.15) u1(t) < Inpy,
(2.16) ’uz(t) <lIn 02,

kyd1)M
(2.17) u3(t) <In Dall—)— %/ 1n p3

3
and
M

(2.18) ug(t) < In (—kzjf—) “ 1 pa.

Choose 7; € [0, w] such that

Then it is clear that
ui(m) =0, i=1,234.
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From this and system (2.2), we have
di (1) e¥3(m)
b - D —a ewlm) - 07
(2.19) 1(m) — D1(m) — ax(m) el + e
+ DZ(m)em(m)—ul(m) =0,

(220)  ba(nz) — Da(1) — az(nz)e*>(™) + Dy(ng)e™ (1) ~u2lm) = g,

(2.21)
k1(n3)dy (n3) et (ms—T1(na,e1 (1) e2(10)))
c1(n3) + evr(m—7i(ng,ev1(73),ev2(13)))

— b3(n3) — az(nz)e*s™) +

dy(ns)es(m)
" eg(mz) + eualm)
and
ka(n4)da () e¥a (ma—T2(na,e 30ra)))

(2.22) —ba(ng) — ag(ng)e ) + ea(ma) & w2l ) = 0.
From (2.19) and (2.20), we have

aMe1m) > ) (n)e ™M) > () — Dy)t — dMeuslts)
(2.23) > (by— D)l M -0

ag

and
(2.24) a}e®2(12) > gy (ny)e®2 () > (by — Dy)t > 0.
Since f(z) = -clﬂ%r—z is increasing with respect to z € (0,+00), from

(2.21), we have

(krdp)'er () a3 (kadp)™

M _us(ns) ua(ns) 5 _pM
(2.25) a3z €**'™ > az(n3)e > —bg + c{\/1+6u1(771) ai

From (2.23) and (2.25), we have

oM eualms) 5 _ pM _ déu(kzlfb)M
Gy
(k1d1)![(by — D1)lal — @M (kyd1)M) S0

a{”aéc{w + (by — Dl)laf3 — d{”(kldl)M ’

(2.26)

(2.22) gives

(kadg)tevs(ns)

M _ug(na) uq(74) _pM N LTes
a, e Z a4(774)e > b4 + Céw +€u3(n3) )
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from which, together with (2.17) and (2.26), we obtain that

M _ua(ng) M aj(kada)" m a3 (kadp)M

e > — b4 + M M b -1
az [“3‘32 + (kldl J 7

[(b1 — D1)al — dif (k1d1)™]

Y il > 0.

ai’ age} +(b1 Dy)'ay

Therefore, from (2.23), (2.24), (2.26) and (2.27), it follows that there

exist four positive constants 6;(i = 1,2, 3,4) such that

(2.28) e > 6, i=1,234.

From (2.15)-(2.18) and (2.28), we obtain

(2.27)

kidq)H(b
+(11)

i (t)] < max{|Inpi|, | In6;|} & R, i=1,2,3,4.

Clearly, R;(i = 1,2,3,4) are independent of A. Using the differen-
tial mean valued theorem, it follows that there exist some points §; €
[0, w](i = 1,2, 3,4) such that when (u1, ug, us, u4)” is a constant vector,

w] [P0 = i« D
U (b2 - DQ) — a2€u2 -+ D26“1 u2
(2.29) QN us| = b meus 4 Fdiet  __dge
u 3 3 01(62)+6“k1 - c2(€3)+ets
4 — g
_b4 - a4€u4 + ﬁﬁm
Denote
4
M=) R+ R,
i=1

here Ry is taken sufficiently large such that each solution (a*, 3*, v*, v*)T
of the following system

(bl Dl) - W + Dleﬂ o= 0
(b2 — Dz) — ageﬂ + Dzea A= 0,
(230) —b + kldle _ d ev =0
s —age’ ci(fe)+te®  ca(fz)tem T O

—by —age” + JRBTL =0,
satisfies [|(a”, 37,7, v")T| = |o*] + 8%] + [v*| + Jo*| < M, provided
that system (2.30) has a solution or a number of solutions. Now we
take Q = {(u1(t), ua(t), us(t), ua(t))? € X : [|(u1,u2,us,us)T|| < M}.
This satisfies condition (a) in Theorem A. When (ug,us,us,us)? €
o0 NKerL = 00N R4, (uy,uz,u3,us)T is a constant vector in R* with
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Z;i:l |u;| = M. If system (2.30) has a solution or a number of solutions,
then

QN(Ul, Uz, u3z, u4)T 7é (07 Oa Oa O)T

If system (2.30) does not have a solution, then naturally

Uy 0
oN 2] £ |
us 0
Uq 0

This prove that condition (b) in Theorem A is satisfied.
Finally we will prove that condition (c) in Theorem A is satisfied. To
this end, we define ¢ : DomL x [0,1] — X by

¢(’U,1, uz, u3, U4, /'l‘)

by —Di)—a7g e _=die¥3 | P uz-wy
(b= Dy) —a e* 7<% + Die
(b2 — Dg) —ag e*? Eeul —u2
= | _pr — g eus 4 _kudiet | HH e :
e A e
b, 7 Pl 2dge?3
b4 a4 € + c2(€4)+€u3 0

where p € [0,1] is a parameter.
When (u1,ug,us,uq)’ € QN KerL = 90N R, (uy,u2,us,uq)? is

4
a constant vector in R* with Y |u;| = M. We will show that when
i=1
(u1, ug, us, us)? € ONNKerL, ¢(ui, uz, u3, us, u) # 0. If the conclusion is
4
not true, i.e., constant vector (uy,us, u3,us)” with Y |u;| = M satisfies

=1

é(u1,uz,u3, ug, ) = 0, then from

(bl — Dl) — a—leul — _&Tl_‘ius_ + uD_leuz—ul — 0,

iz 2) cLE) e
(bg — D) — aze"? + puDqae*17%2 = 0,

e — Oa kidie1 _ _ pdpet
_b_3 a36u4 —|— 61(162;‘*‘5‘“1 C2(£3)+6u3 - 0,
—by — Gge™ + J2RES =0,

by following the arguments of (2.15)-(2.18) and (2.28), magnifying f
into fM and reducing f into f', here f denotes every function in (H1),
and magnifying u into 1 and reducing p into 0, we can obtain

lu;] < max{|Inpl|Ind;|}, ¢=1,2,3,4.
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Then
4

4
> luil <Y max{|Inpil,|In &} < M,

i=1 i=1
which contradicts the fact that constant vector (ui,usg,us, u4)T satisfies
E |u;| = M. Therefore, ¢(u1,ug, ug, u4, ) # 0, when (ul,uz,ug,m)T €

BQ NKerL. Using the property of topological degree and taking J =1 :
ImL — KerL, (u1,u2,u3,uq)T — (u1,u2,u3,uq)”, we have

deg(JQN (u1,ug, u3, us)T, 2N KerL, (0,0,0,0)7)
= deg(d(u1,u,us, ug, 1), 2 NKerL, (0,0,0,0)T)
= deg(p(uy, ug, u3, ug,0), 2 NKerL, (0,0,0,0)7)

= deg{ [(bl — Dl) — arett, (bz — Dg) — Gge™?,

kldle'“ — k2d26u3 T

by —age + — 21 By —ageud 4 220
5 alé)+ea’ M co(€4) + evs

QN KerL, (0, 0,0,0)T}.

In view of the conditions of Theorem 2.1, then the system of algebraic
equations:

(bl - Dl) —u=0,
(b2 - D2) - EE’U_—:_O,
—b3 —azm + C&Zjiu =0,

kodom
02(2£4§+m =0

~by — @gn +

has a unique solution (u*,v*, m* n*)T which satisfies:
b bl b

~bs +

3 > 0.
a3 aic1(é2) + (b1 — D)

m =

u* = ————(bl __Dl) >0,
ai
v* = ——(b2 :D‘?) >0,
az
«_ 1] = kid1 (b1 — D1)
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Since m* < B4 thus,
a3

* 1 = kzdgm* )
n = —\|-by+ ——
a4 ( 4 62(54) + m*
1 — azkodom™
e
azca(€4) + krdy

T (_7C kidi (b1—Dy)
ba kady < b3 + 501(52)+(b1—D1))
—bs +

at azca(&4) + krdy

> 0.

Therefore

deg(JQN (uy,ug, u3, uq)’, QN KerL, (0,0,0,0)7)

0 —agv* 0 0
= sign |kidici(&2)u* e
& [e1(€2)+u*]? 0 —a3m( ) ’
kodam™ca(&. —
0 0 [c22(2£4)-i-72n*j12 a4

= sign(ay @z a3 aguv*m*n*)

1.
This completes the proof of condition (c) in Theorem A and the proof
of Theorem 2.1 is completed. O
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