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OPTIMAL CONTROL PROBLEMS
FOR THE SEMILINEAR SECOND
ORDER EVOLUTION EQUATIONS

JONG YEOUL PARK AND SUN HYE PARK

ABSTRACT. In this paper, we study the optimal control for the
damped semilinear hyperbolic systems with unknown parameters
(CHY) + A2t @y + Ai(t, @)y = f(t, a9, 9).

We will prove the existence of weak solution of this system and
is to find the optimal control pair (g,%) € Q- X U,q such that

infueu,, SUpLeq, J(g:u) = J(§,@).

1. Introduction

The optimal control problems have been extensively studied by many
authors [1, 6, 8, 12, 13, 19] and also identification problem for damping
parameters in the second order hyperbolic systems have been dealt with
by many authors [10, 11, 18]. In this paper, we consider the following
systems

(1 1) { (C(t)y,), + AZ(t7 q)y, + Al(t7 q)y = f(tv Y, u) in (07 T)a
' ¥(0,q,u) =y € V,¥'(0,q,u) =y1 € H

and the cost criterion given by a general lower semicontinuous integral
functional of the form

T
(1.2) J(gu) = /O olt,y, w)dt,

where V and H are real Hilbert spaces, C(t) is a linear operator which
is given by a bilinear form on H, Aj(t,q) and As(t,q) are differential
operators containing unknown parameter ¢ € @, which are given by
some bilinear forms on Hilbert spaces, f is a forcing term with unknown
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parameters ¢ € Qr,u € Upg, ¢ is an integrand defined on [0, 7] x H x Y
determining the cost criterion and Y is a separable reflexive Banach
space. The optimal control problem subject to (1.1) with (1.2) is the
following “min-max” problem;
S sup J(q,u),

rather than a minimization problem. In this paper we will study the
existence of weak solutions for (1.1) and the optimal control to the sys-
tem (1.1) with (1.2). In other words, we will find (,4) € Q, x Uy
satisfying infyuey,, Sup,eq, J(g,u) = J(g,@). It is not easy to find the
elements (g, %) belonging to an admissible set Q, x U,q of parameters
subject to (1.1) with (1.2). Hence we will show the existence of such
(@,%) when Q. is compact and U,q is endowed with the w*—topology
in L*®(0,7;Y). Recently, inspired by the optimal control theoretical
studies of Euler-Bernoulli Beam Eqations with Kelvin-Voigt Damping
and Love-Kirchoff Plate Equations with various damping terms, there
appeared numerous papers studying optimal control theory and identi-
fication problem for the autonomous case of (1.1) on the Gelfand triple
spaces. Banks et al. [7] and Banks and Kunisch [8] treated the ex-
istence of minimizing parameters by using the methods of approxima-
tions. When A1(t,q) = vA2(t,q),y > 0 in (1.1), Ahmed [1, 2] studied
the identification problem estimating ¢ via output least-square identi-
fication problem based on the transposition method and some authors
treated the problem with the cost criterion of the quadratic form (see
[11, 17]) for the system (1.1) replacing C(t) and f(t,¢,y,u) by identity
operator and f(t) or f(t,y), respectively. In Papageorgiou [14, 16], the
cost criterion is a general form concerned with one parameter. Specially,
in this paper we study the optimal control problems to (1.1) with (1.2)
on the Gelfand five fold. Using the Gelfand five fold structure we may
have some advantages that the operators Aj(t,q) and Az(t,q) can be
defined with free differential orders in spatial sense. This paper is com-
posed of the pairs of preliminaries as section 2, existence and uniqueness
of the solutions for (1.1) as section 3 and sufficient conditions for (1.1)
with (1.2) as section 4.

2. Preliminaries

First we explain the notations used in this paper. Let H be a real
Hilbert space. The norm on H will be denoted by |- |z and the corre-
sponding inner product by (-, ). Let us introduce underlying Hilbert
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spaces to describe the damped second order equations. For ¢ = 1,2,
let V; be a real separable Hilbert space. V;* denotes the dual space
of Vi,|| - |lv; denotes the norm on V; and < -,- >y y; denotes the
dual pairing between V;* and V;. Assume that each pair (V;, H) is a
Gelfand triple space with a notation, V; — H = H* — V;*, which
means that an embedding V; — H is continuous and V; is dense in
H, so that the embedding H — V;* is also continuous and the iden-
tified H = H* is dense in V;*. From now on, we write V1 = V for
notational convenience. We suppose that V is continuously embed-
ded in V. Then we see that V — Vo — H = H* — V) — V* and
the equalities < ¢,p Sy« y=< ¢,p >ypy, for ¢ € Vi,p € V and
< ¢, >yry= (¢,9)u for ¢ € H,p € V. We shall give an exact de-
scription of damped second order equations. We suppose that Q is al-
gebraically contained in a linear topological vector space with topology
7 and Q, = (Q, 7) is closed. Let T' > 0 be fixed.

We consider the following Cauchy problem for semilinear damped
second order evolution equations

(2 1) { (C(t)y,)' + A2(t7 Q)y' + Al (t7 Q)y = f(ta q7 yv u) in (07 T)7
' y(0;q,u) = yo € V,y/(0;¢q,u) = y1 € H.

We will need the following assumptions concerning the data of (2.1):

(HA) a;(t,q;¢,¢),t € [0,T],9 € Qr,t = 1,2: V; x V; — R : a bilinear
form such that
(1) ai(t7 q; ¢> <P) = CLi(t, q; ¢ ¢) for all ¢v pe Vi
(2) there exists ¢;; > 0 such that |ai(t,q; ¢, 9)| < calldlivillelly,
for all ¢, € V;,
(3) there exists o; > 0 and \; € R such that a;(t, g; ¢, p)+Ni|d|% >
ai|gl]}, for all ¢ € V;, the function t + a;(t, ¢; ¢, ) is continuously
differentiable in [0, T,
(4) there exists ¢;p such that |a{(t, ¢; ¢, )| < ciall8|lv;]|¢lly; for all
¢, € Vi, where’ = %. Then we can define the operator A;(¢,q) €
L(V;, V;*) for t € [0, T} deduced by the relation S,
(5) al(taQ7 ¢790) =< Al(tvq)¢7 12 >Vi*,Vi for all ¢7S0 ev,
(6) ai(t,q; 9, 9) =< A(t,Q)d, 0 >vyv; for all ¢, p € V.

(HC) c(t;d,¢),t €[0,T]: H x H — R : a bilinear form such that
(1) c(t; b, ) = c(t; p, ¢) for all ¢, € H,
(2) there exists c3; > 0 such that [c(¢; @, )| < cs1|dlulp|a for all
ép € H,
(8) there exists g > 0 such that |c(t; @, ¢)| > as|é|% for all ¢ € H,
the function ¢ — c(¢; ¢, ) is continuously differentiable in [0, 7],
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(4) there exists cgp > 0 such that |¢/(¢; ¢, )| < c32|@|mlpla for all
#,p € H. Also, we can define the operators C(t),C'(t) € L(H, H)
for ¢t € [0,T] deduced by the relations,

(5) c(t; 6, ) = (C(t)¢, ) for all ¢, € H,

(6) ¢ (t;0,0) = (C'(t)p, ) for all ¢, € H.

(1) Y is a separable reflexive Banach space.

(2) U : [0,T) - CC(Y) = {class of nonempty, closed, convex sub-
sets of Y} is a measurable multifunction satisfying U(t) C U for
almost all ¢t € [0,7], where U is a fixed weakly compact convex
subset of Y. For admissible controls, we choose the set U,q = {u €
L>®(0,T;Y) : u(t) € U(t) ae. } and endow the relative w*—
topology on U,q as a subset of L>(0,T;Y). Since L*(0,T;Y) =
LY(0,T;Y*)* and L!(0,T;Y™) is separable, it is well known that
U,q topologized as above is compact and metrizable.

F:00,T] xQr x Vo x Y — V5 such that

(1) t— f(t,q,y,u) is measurable,

(2) there exists a 3 € L2(0,T;R*) such that ||f(t,q,y1,u) —
it g, 2, w)llvy < B)|lyr — y2llv, a-et, uniformly with respect
toge Qr,uey,

(3) there exists a v € L2(0,T; R") such that ||f(¢,q,0,u)|
~(t) a.e.t.

vy S

We write ¢’ = ‘fi—? and define a Hilbert space, which will be a space of
solutions as

w (0,

T)={glg € L*(0,T;V),¢ € L*(0,T;V2),(C(-)g") € L*(0,T;V*)}.

The norm of W(0,T) is given by

1
||g”W(O,T) = (HQH%Q(O,T;V) + HQIH%Z(O,T;VQ) + ||(C(')Q,)I||%2(0,T;V*))2-

We denote by D'(0,T') the space of distributions on (0, 7).

DEFINITION 2.1. A function y is said to be a weak solution of (2.1)
if y € W(0,T) and y satisfies

(2.2)

(2.3)

COY O vy +a2( ;9 (), d) + ar( 4 9(), @)

= (f(¢,y(),u),¢)vs v, for all ¢ €V in the sense of D(0,T),

y(0,q,u) =yo € V,¥/(0,q,u) =y1 € H.
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3. Existence and uniqueness

We state the existence and uniqueness results of a weak solution of
(2.1).

THEOREM 3.1. Assume that (HA), (HC), (HU) and (Hf) hold. Then
the problem (2.1) has a unique weak solution y in W(0,T).

COROLLARY 3.1. Assume that (HA), (HC) hold and f(t,q,u) € L?(0,
T;Vy). Then

(3 1) { (C(t)y,)’ + AZ(t’ q)yl + Al (t7 q)y = f(t, q, u) in (07 T)?
' y(0;q,u) =y € V,9'(0;q,u) =y1 € H

has a unique weak solution y in W(0,T).

Existence Proof of Theorem 3.1. We divide the existence proof into
four steps.

Step 1. Approximate solutions.

We use the Faedo-Galerkin approximation as in [6, 12]|. Since V is real
separable, there exists a basis {wm}5_, in V such that

(1) {wm}S_; is a complete orthonormal system in H,

(ii) the set of all finite linear combinations, {3 7%, §;w;lé; € R,m €
N} is dense in V, where NV is the set of natural numbers and R is
the set of real numbers. For each m € N we define an approximate
solution of the problem (2.1) by ym(t,q,u) = 3_71, gjm(t, ¢, u)w;. From
now on, we write y,,(t) = ym(t,q,u), f(t,q,v,u) = f(¢,y) for notational
convenience. In above y,,(t) satisfies

d
(3.2) %C(t; Y (£), w5) + aa(t, ¢ Y, (), w;) + a1(t, ¢ ym (), wy)
- <f(t7ym(t))7wj>vz*,V2a te [OvT]a 1<j<m,
Ym(0) = Yom € V, 4 (0) = y1m € H.

By (i) and (ii), we can find real numbers ) and &l i=1,2,--- ,m,m €
N such that

m
(3.3) Yom = ngmwi — 1y inV asm — oo,

i=1

m
Yim = E &ow, —y in H as m — oo.
i=1
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Then the equation (3.2) can be written as m vector differential equation

d - . d " d. i
dt(C( )dt m) + Aa(t, q)ggm + Ai1(t,q)Gm = f(t,Gm)

with initial values g, (0) = [g(l)m,§2m, . ,Emm] and gm(O) (€5 Eoms
]’ Here G = [gim, -+ gmml’s Au(t,q) = (al(t q,wz,wj)' i =

1,2, ,mj3j=12,--. ) Ath az(t, g ws, wy); i =1,2,-+ ,m,
j=1,2,-~-,m),0(t)= (cltwi,wy);s = 1,2, ,myj = 1,2, )
and f(t7 §M) = [(f(tvzznzlglmwl) wl)VQ YV27"'7< tvzzr'llgimwi)awm>V;yV2]t)

where [- - - ] denotes the transpose of [ - -]. Then the elements of A;(t, )
and Ay (t,q) are C'-class and the nonlinear term of the vector function f
is Lipshitz continuous. Indeed, for g, =Y i~ gimw;, Em =3y himws,
it follows by the assumption (Hf)(2) that

- — e

If(t gm) - ( ahm)l2

= Zl Zglmwz —f(t,zhimwi),wj>v2*,1/2|2

j=1 i=1 i=1

Z ||"UJ“V2 Z |gim — him|2

i=1

= Z [w;l[3)21Gm — R

IN

Here we use the Holder’s inequality. Therefore this second order vector
differential equation admits a unique solution g, on [0,7], by reducing
this to a first order system and applying Carathéodory type existence
theorem. Hence we can construct the approximate solutions y,(t) of
(3.2).

Step 2. A priori estimates.
In this step we shall derive a priori estimates of y.,(t). We multiply both
sides of equation (3.2) by g7,,(¢) and sum over j to have

(3.4 (1O (1) Yo )1+ 208,591 (), 2 ()

+a3 (t’ a; ym(t)7 y;n( ))
= (f(t:ym(t)%%'n(t»vz WVa.
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It is easily verified by the differentiation of a; and symmetry (HA)(1)
that

(3.5)
(6, (1), Yo (8) = 5 016 05U (0), U (8)) — 556, U (8), ()
and
(3.6)
d ’ ’ 1 d / / 1 / !/ /
(ICOUO Yo )i = 5 et Y ), Y0 + 2 (15 ), Ui (0).

To simplify notations let A\; = |A\;|,i = 1,2 in all estimations in what
follows. Then by substituting (3.5) and (3.6) for (3.4), we have

(BT) - St Yn(8) + ¢ 6 Yo (0), Y ) + (0, 05m(8), U ()

—a1(t, g; Ym (1), ym (1)) + 202(t, G Y (), Y (1))
= 2<f(t7ym(t)):y;n(t»Vg*,Vz'

Integrating (3.7) on [0, t], we have
(3:8) c(t; Y (), U (1)) + a1(t, 4 Ym (1), Yn (1))

t
+2 / 02(0, 4 ¥ (0), Ul (0))do
0
t
= C(O,q;ylm,ym)+a1(0,q;y0m,y0m)+/ 1(0,4;Ym(0), ym(0))do
0

- [ ¢ 4m(@) thnlo))io + 2 | 4@, un(@), 4in(@))v; 2
0 0

Let € > 0 be an arbitrary real number and ks be the constant such that
l19llv; < kal|@|lv for all ¢ € V. From (Hf)(2), (3) we obtain

t
(3.9) 2 /0 (F(0,Ym(0)), U (0))do|
t
= 2|/0(f(avym(‘f))—f(U,O)+f(0,0),y;n(0)>v2*,v2d0|
< 9 / B(0) ()N 5 4 () vl +2 / V()10 lvador

1 k2 [4 14
< iz + 2 [ B@ e +2¢ [ (o)l do
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Since the equality, ¥m(t) = yom + f(f y,.(s)ds implies

t
lym (@) < 2lym O3 + 2T /0 () s

and since ||yom||lv < c1llyollv and |yim|m < c2lyi|a for some c1,cp > 0
(see (3.3)), it follows from (3.8), using (HA)(1)-(4),(HC)(2), (4) and
(3.9),

t
310)  aullum(@lF + calyin 0l + 2oz =€) [ lvin(@)l;do
1
< Glen + 20k yollf + carclyalir + 2“7”%2(0,T;R+)
¢ k3 o 2
+ [ e+ 280N umi) o

¢
+(2X2 + c32 + 2T/\1)/ |y (o) |3 do,
0

where k; is the embedding constant such that |¢|g < ki]|¢||v for all
¢ € V. Let us divide (3.10) by @ = min{ay,a3} > 0. We choose ¢
sufficiently small such that n = 2a71(ay — €) > 0. Then (3.10) implies

(3.11) I + () +1 /0 ()12, dor

t ~
< C+ /0 B lym(@1Z + 5 (o) ) do,

where C = L[c}(c11 + 2MkD)|lwollf, + earcdlynl¥ + ¢lVlIZ2 o rym+)] and
~ 2

B(o) = L(ciz+ k—jﬂZ(a) + 22+ ¢392+ 2T )\q). Thus it follows by Bellman-
Gronwall’s inequality that

(312)  llum®IE + W} < Cexp( /0 B(o)do) < Cexp (B),

where B = ||B“L1(0,T;R+)- By substuting (3.12) for (3.11), we have

¢
(3.13) lym @O + lym (Ola + 77/0 1Ym ()15 do
< C+Cexp(B)B < .

Step 3. Passage to the limit.
The estimate (3.13) implies that

(3.14) {ym} is bounded in L*(0,T;V) c L*(0,T;V)
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and
(3.15) {y..} is bounded in L?(0,T; Vo) N L™®(0,T; H).

Since the forms a1,a},as,c and ¢ are continuous in t for all ¢ € Q-,
we deduce that {A1(-,¢)ym} and {Ai(-,¢)ym} lie in a bounded set of
L®(0,T;V*) € L*(0,T; V*), {A2(-,q)y},} lies in a bounded set of L?(0,
T;Vy) and {C(-)y,,} and {C’(-)ym} lie in a bounded set of L2(0,T; H).
Therefore, by the extraction theorem of Rellich’s we can find a sub-
sequence {ymr} of {ym} and find z € L®(0,T;V) C L*0,T;V),z €
L%(0,T;V2) N L*(0,T; H),z1 € L*0,T;V*), 22 € L*(0,T;V*),z3 €
L%(0,T; V), 24 € L3(0,T; H) and 25 € L?(0,T; H) such that

(3.16) Ymr — 2z weak-star in L*°(0,T : V) and weakly in L*(0,T; V),
(3.17) 9., — Z weakly in L%(0,T;V3),

(3.18) A1(-, Q)Ymr — 21 weakly in L2(0,T; V*),

(3.19) A(, @)Ymr — 22 weakly in L2(0,T; V*),

(320) Az(-, q)y;nk — z3 Weakly in LZ(OaT; ‘/2*)a

(3.21) C()yly, — 24 weakly in L2(0,T; H),

(3.22) C'(-Yymi — 25 weakly in L2(0,T; H).

It can be seen from (Hf)(2), (3) and (3.13) that {f(¢,ymk)} is bounded
in L2(0,T;Vy). Hence we can find a subsequence {m;} of {my} and
Y € L?(0,T; V3') satisfying

(3.23) f(,ymi) — Y weakly in L2(0,T; Vy).

On the other hand, we have that for ¢ € [0,T)

t
(3.24) Yot (£) = 4t (0) + /0 Y (0)do

in the V' (and hence V, and H) sense. Moreover, ¥,i1(0) = yom, — Yo in
the V and hence V> sense, whereas for each ¢,

¢ ¢
/ Yy, (0)do ——>/ zZ(o)do weakly in V3 by (3.17).
0 0
Hence taking the limit in the weak V3 sense in (3.24) we obtain
¢
(3.25) z(t) = yo +/ Z(o)do fort e [0,T).
0

This shows that 2/(¢) exists a.e. in the V3 sense and z = 2’ € L2(0,T; V»),
2(0) = yo, hence we from (3.18)-(3.22) that 21 = A1(-, ¢)z, 22 = A (:, 9)z,
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z3 = Ao(-,q)7, 24 = C(-)2 and 25 = C'(:)z (cf. [6]). Let j be fixed.
Multiply both sides of (3.2) by the scalar function £(t) with
(3.26) ¢ € CH((0,1)), &(T) =0,
and put ¢; = {(¢)w;. Integrating these over [0,T] for m; > j and using
integration by parts, we have
820 [ - COM 0, H O + e a1 1), 5(0)
+(11(t Q;yml( ) ¢]( ))]
T
= | ), 65003t + (€O 850D

If we take I — oo in (3.27) and use (3.16), (3.17) and (3.23), then we
have

T
(3.28) /O [—(CHZ (1), (0 + aslt, g: 2(8), 65(8))
st g 2(8), ;) dt
T
- /0 (Y (), 63 (D)vs vade + (COYr, 65(0)) i,

so that

(3.20) / £t £), w;)

/ é- {a2 t,q;z wj)'i_al(t)q;z(t)’wj)

=Y (8), wivy Vg}dt
= £(0)(C(0)yr, wj)n.
It we take £ € D(0,T) in (3.29), then

(330) %(C(')zl(')ij) + a2('7‘1; zl(')’ wj) + (11(‘, q; Z(')7wj)

= (Y()wi)vswe
in the sense of distribution D’(0,T). Since {377, &w;|¢; € R,m € N'}
is dense in V, we conclude by (3.30) that (C(t)z’(t))’ —Ai(t,q)=(t) —
As(t,q)2'(t) +Y(t) € L?(0,T;V*) and for all p € V
(3.31) (COZC) Bvey +aa(,4:2(), 9) +a1(-, g5 2(-), §)

= (Y () ¢>V2 Ve
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in the sense of D/(0,7). Multiplying both sides of (3.30) by £ in (3.26)
and using integration by parts, we have from (3.28)

(C(0)2'(0),w;)r&(0) = (C(0)y1, w;) u&(0),
and that (C(0)2'(0),w;)sr = (C(0)y1,w;)g. Since {w;}52; is dense in
H, we obtain C(0)2/(0) = C(0)y;. From (HC)(3) it is easily verified
that C(t) is invertible for all ¢ € [0,T], and thus we have 2/(0) = y; in
H. This also proves that z is a weak solution of the linear problem (3.1)
in which f(¢,y) is replaced by Y (¢).
Step 4. Strong convergence of approximate solutions.

In this step we show that Y (-) = f(-,2(-)) in (3.31). In order to prove
this we must show y,,, — z strongly in L?(0,T;V2). In what follows
we write ym, = ym for simplicity. Since z is a weak solution of with
f(t) = Y (t), we can prove the following energy equality (see Ha [11] for
more detailed proof),

t
(3.32) c(t; 2'(1), 2 (t)) + a1(t, g; (1), 2(t)) + 2/0 az(0,¢;%'(0), 7' (0))do
= ¢(0,q¢;2'(0),2'(0)) + a1(0, g; 2(0), 2(0)) +/0 ay(o,q; 2(0), z(0))do

¢ t
- / (052 (0), #(0))do + 2 / (¥ (0), 2'(0)vyp.vydo.
0 0
For each t € [0,T7], the following equalities hold ;

a1(t, g; Ym, Ym) + a1(t, ; 2, 2)

= a1(t, ¢;Ym — 2,Ym — 2) + 201(t, G; Ym, 2);
a2(t, 4 Y U) + a2(t, ¢ 2', 2')

= aa(t, @ Um — 2 Y — 7)) + 202(t, 45 Y 2);

(t, 43 Ym» Ym) + 1 (t, g5 2, 2)

(t, G5 Ym — 2, Ym — 2) + 201 (t, ¢; Ym, 2);

(t; Yo Ym) +c(t; 2/, 2")

= c(t;ym — 2 Ym — &)+ 2¢(t; Y, 2');

't Yo Ym) + € (82, 27)

"t Ym — 2 Y — 2) + 2 (89, 2);

(t ym), Umdvy ve + (Y (), 2) v va

(tym) — F(82), Y — 2Dz e + (F(8,2) = Y (), 4, — 2 )vpva

@& um), 2D vp ve + (Y (), Ura) vy va-

2
a
/
1

Il
)

)

(f
(f
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Adding (3.8) to (3.32) and using the above equalities, we have

(3:33) ety (t) — 2'(8), yn(t) — £'(1))
+a1(t, ¢ ym(t) — 2(2), ym (t) — 2(1))

t
+2 /0 02(0,4; Yjn(0) — 2(0), Y (0) — 2'(0))dor

3 ' t
= Yo+ Vi) + / 01(0, 4 ym(0) — 2(0), ym(0) — 2(0))do
i=0 0

_/0 ¢(0;Ypn(0) = 2(0),Ura(0) — 2 (0))do

t
+2 /0 (f(0,ym(0)) = £(0,2(0)), yin(0) — 2 (0))vy V2o,

where

(3.34) Y?

m

(3.35) Y.1(t)
(3.36) Y2(t)

(3.37) Y,3(¢)

We set

(3.38)

¢(0; y1m, Y1m) + ¢(0;y1, v1)
+a1(0, g; Yom, Yom) + @1(0, ¢; ¥o, ¥o),
—2¢(t; Yy, (t), 2'(t)) — 2a1(t, ¢; ym (1), 2(1)),

4 /0 02(0,¢; 4o (0), 7 (0))do
t
+2 /0 &0, 6 Ym(0), 2(0))do
2 /0 ¢ (0:4n(0), 2 (0))do,
2 / (F(0,2(0)) = ¥ (0), 4n(0) — #(0)vpv3do
0
2 /O (F(0, 4m (@), 2(0)) vy wado

+2 /0 (¥ (0), 4 (0))v;s vado

3
Yo(t) =Y+ > Y (t).
=1
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By the similar calculations as in the step 2, the equalities (3.33) and
(3.38) imply

(339)  aullym(®) — 2O + aslyla(t) — Z O
(202 — ©) / [ym(@) — ()3, do
0
< Yin(t) + 200K lyom — woll%

t
2\ + 20T + c2) / (o) — 2(0) do
Q

t k2
+/ (c12 + “232(o)||ym (o) — z(a)Iﬁ,do for any € > 0.
0 €

We divide (3.39) by @ = min{a1, a3} and choose ¢ sufficiently small that
7Y (200 — €) > 0. If we set

(3.40) B (t) = |lym () — 2|3 + [y (&) — 2/ (&),

(3.41) Zmn(t) = a1 (Vi (8) + 20053 [yom — w0||%) and
2

(3.42) h(t) = a”(cia + c32 + 222 + 20T + k—:ﬂ(t)),

then the equality (3.39) implies

(3.43) Bn(t) < Zim(t) + /0 t h(s)®m(s)ds.

Since Z,,(t) is continuous and h(s) > 0, we apply the extended Bellman-
Gronwall inequality

(3.44) () < Zim(t) + /0 exp ( / B(7)dr)R(s) Zom(5)ds.

Let K(t,s) = exp (fot h{7)d7)h(s) and M, (t) = fé K(t,8)Zm(s)ds. Then
we see that
|K(t,5)| < exp (||hllL1(0,r;r+))P(s)
and M,(t) is uniformly bounded on [0, T]. We shall show that
(3.45)
t

lim Zm(s8)ds =0 and limoo My, (t) =0 for each t € [0,T).

m-—CcQ 0

By (3.41) and yomm — yo strongly in V; it is sufficient to prove that

m—oo

¢ ¢
(3.46) lim Yn(s)ds =0 and limoo/ K(t,s)Ym(s)ds = 0.
0 m=Jo
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Consider the integral
t t 3.t _
In(t) = / K(t, 5)Yn(s)ds = / K(t,5)ds¥0+ 3 / K(t, )Y (s)ds.
0 0 =1 /0

Since Yom — Yo strongly in V and y1,, — y1 strongly in H, we see
(3.47) Y9 — 2¢(0;y1,%1) + 2a1(0, ¢; Yo, %o)-
For each t € [0,T], we have by (3.17)-(3.20) and (3.22) that

t
(3.48) Y2 (t) — / (—4as(o,q;2',2') + 2d)(0,q; 2, 2) — 2¢ (03 2/, 2))do,
0

349 V30— 4 [ (o), s o

We note that Y2(¢) and Y,3(¢) are uniformly bounded on [0,T]. Since
K(t,-) € LY(0,T;R*), it follows from (3.16) and (3.17) that

(3.50) / K(t,0)Y.}(0)do
- /0 (—2(A1(0, 0)ym: K (1, 0)2) vy — 2AC(0)olos K (£,0)2) 1) do

¢
— =2 [ Kt o){lo,q:22) + cloi ', 2))do,
0
We also note that the integrals in (3.50) are uniformly bounded on [0, 7.

Hence by using (3.47)-(3.50) and the Lebesgue dominated convergence
theorem, we have

t
(3.51) I — 2/0 K(t,s){a1(0, q¢;y0, yo) + c(0;y1,71) }ds
t
12 [ Kt 9)(-01(0,0:5(9), 2(6)) = c(s5 2 (5), 2 (5) s
t s
+2/O K(t,s){—2/0 az(0,q;2',2)do
+/OS ay(o,q;z,2)do — /Os d(o; 2,2 )do}ds
t s
+2/O K(t,s){Q/O (Y(0),2")v; vpdo}ds =0,

because of (3.32). This shows the second part of (3.46). Similarly we can
prove the first part of (3.46). By integrating (3.44) on [0,T] and using
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(3.45) and the Lebeque dominated convergence theorem, we verify that

T
(3.52) lim ®(s)ds = 0.

m—00 0

This implies that y,, converges strongly to z in L2(0,T; V) C L*(0, T; V2).
Then, it follows from (Hf)(2) and (3.23) that Y'(-) = f(-, z()) in L?(0, T;
Vo). Therefore, we prove the existence of a weak solution z of (2.1). O

Uniqueness proof of Theorem 3.1. Let y1 and ys be the solutions of
(2.1) and z = y; — yo. Then by the energy equality we have

(3.53)  c(t;2'(t), 2 (8)) + ai(t, q; 2(2), 2(t)) + 2 /Ot as(0,q; 2,2 )do

t

t
= /a’l(a,q;z,z)da— d(o;2,2)do
0 0

¢
+2/0 <f(07 yl) - f(aa y2)a Z/>V2*,V2d0-

Now by the similar calculations as in step 4(see (3.33)) and noting that

Y (t) = 0 in this case, we have

(3.54) 2z + 2/ )4 =0 for all t € [0,T].

Therefore the uniqueness is proved. O

4. Sufficient conditions

In this section, we consider the case where all the parameters ¢ related
to the diffusion operator A;(t,¢) has already known, i.e., the damp-
ing operator As(t,q) contains unknown parameters only. Hence letting
A1(t, q) = A1(t), the system (2.1) is written as

(4.1) { (COY) + Aoty + A1(M)y = f(t,g,5,u) in (0,T),
¥(0,q,u) =yo € V,y/(0,q,u) =y € H.
Let us consider a cost functional attached to (4.1) as

T
42 J(guw= /0 ot y(t), u(®))dt, q € Qryu € Usa,

where y is a solution of (4.1) for given ¢ € @, and u € Uyg. Our main
aim is to find (G, @) € Qr X U,y satisfying

(4.3) J(g, @) = inf sup J(g,u).
u€lag a€Qr

For our purpose we need the following conditions;



784 Jong Yeoul Park and Sun Hye Park

:[0,T] x H x Y — R is an integrand such that

1) (t,y,u) — g(t,y,u) is measurable,

2) u — g(t,y,u) is convex and lower semicontinuous(ls.c) for all
€[0,T],y € H,

3) y — g(t,y,u) is continuous for all t € [0,T],u € Uyg,

4) ¢(t)-M|yla+llully) < g(t,y,u) ae. with¢ € L'(0,T; R), A >

i

(5) for every M > 0 there exists nyy € L'(0,T; R*) such that
lg(t y,u)| <mm(t) ae t€[0,T], allu € U(R),lyly < M.

Furthermore, we give assumptions to ax(t, q; ¢, ¢) and f(¢,q,y,u);
(4.4) g — az(t,q; ¢, ) is continuous for all t € [0,T], ¢, ¢ € V3,
(4.5) ¢ — f(t,q,y,u) is continuous for all t € [0,T],y € H,u €Y,
(4.6) u— f(t,q,y,u) is continuous for all t € [0,T],q € Q-,y € H.
Note that for each q € Q, ¢, p € Va the following equalities hold:

(Hg)

NN TSN~

=]

sup |az2(t,¢;¢,9)[ = sup [(A2(t,0)8,, ©)vy vl = [|A2(t, 9)9llvy,
lellv, =1 lllv=1

whence the assumption (4.4) and the above equality imply that || A2(¢, q)
#||v; is continuous on g.

LEMMA 4.1. Assume that the conditions in Theorem 3.1, (4.4) and
(4.5) hold. Then y(q,u) € C(Q,,W(0,T)) for every u € Uyg.

Proof. Let u € U,q and suppose that ¢, — ¢ in Q. Let v, = y(gn, u)
and y = y(q,u) be the solutions corresponding to g, and g, respectively.
Then by letting z, = y, — ¥ we obtain equation

(4.7) (C(t)2)) + Aa(t, qn) 2}, + A1(t) 2y
= f(t) dn, Yn, u) - f(ta q,Y, u) + (A2(t’ q) - A2(tu qn))y,'

Since f(t7 an, Yn, U) - f(ta q,Y, ’LL) + [A2(t7 q) - AQ(t7 Qn)]y, € L2(07 Ta ‘/2*)7
we can apply (4.7) to (3.8). Hence we have from z,(0) = z,,(0) = 0,

¢
(4.8) c(t; 2}, 20) + a1 (t, q; zn, 2n) + 2/ a2(0, qn; 2}, 25,)do
0
¢ t
= / ai (o} zn, 2n)do — /0 d(o; 2, 2),)do
0
t
+ 2[) <f(ta an; Yn, 'U,) - f(tv q, y»u)y Z;L>V2*,V2d0'

+ 2/<(A2(0, q) — A2(0,9n)), 2n)vy 12 do.
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Denote A\; = |A;|,7 = 1,2 for notational convenience. If we estimate the
above equality by using (HA)(2)-(4), (HC)(3), (4), (Hf)(2) and Cauchy-
Schwartz inequality, we have

t
(49)  aslehf% + oallzall? + 0 /0 12,13, do
t t t
< )\1|Zn|2H+2)\2/ |Z£L|%Id0“+012/ ||anl%/d0'+632/ |z;|%1d0
1] 0 0

3 [t 3 [t
2 / 142(,q) — Aa(or, ga))y |3 dor + / () |2l 2, do
a2 Jo a2 Jo

3 t
= / 11t ay Yo s) — F(t, 5 gy )]

Note that |2,(t)|} < 2T [¢ |2(0)|%do. It follows from (4.9) that

2
Vi do.

(4.10) aslzhf3 + aullzall? + a2 /O 12412, do
t t 3
< @MT+ g+ ) [ 12 ado + / (e12 4+ B36%(0) ) e dor
0 0 2
3 ¢ 9
s / (As(o,0) — As(0, )y |3 do
(6%)] 0

3 t
+a—2‘/0 ”f(t1 Qny?/ny’Lt) - f(t, Q7 yn/u)”%/;do..

Put a = min{a1, @, a3} > 0 and @,(t) = ||z.(t)||% + |2, (¢)|%. Then we
have from (4.10)

(4.11) B /||z )2 do
_ T
/0 B(o)Balo)do + /0 (42(0, ) — Az(e,4u))y/ (@) I3 do

3 T
oo ) 1 (¢, ns Yns u) = f(t, 4, Yn, w)|[3r do,

where B(0) = L(2MT + 2); + c32 + c12 + k35%(0)2). By Bellman-
Gronwall’s lemma, we have

(412)8,(t) < / (I1(42(0, 0) — Az(0, a2

+||f(thnayn,u) - (tvq’yn’u)||V2*)danp (BT)’
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where B = ||6||107;r+)- Since az(t, q; @, ¢) and f(t,q,y,u) are contin-
uous on g and the right hand side of (4.12) goes to zero, ®,(t) — 0 for
all t € [0,T]. Applying this fact to (4.11), we conclude that y, — y
in C([0,T],V),y,, — ' in C([0,T], H) and ¢}, — ¢’ in L?*(0,T;V3). In
particular, we also have y, — y in W(0,T). 3

LEMMA 4.2. Assume that the conditions of Theorem 3.1, (4.4) and
(4.6) hold. Then y(q,u) € C(Uyq; W(0,T)) for every q in Q.

Proof. The proof is similar to that of Lemma 4.1. 0

LEMMA 4.3. Consider the functional J(g,u) as in (4.2) and assume
that (Hg) and (4.4)-(4.6) hold. Then the mapping (q,u) — J(g,u) is
lower semicontinuous on Q; X Uyg.

Proof. By virtue of the assumption (Hg) and Lemma 4.1 and Lemma
4.2, it is easy to verify the lower semicontinuity of J(g,u). |

THEOREM 4.1. Assume that the conditions in Theorem 3.1 and Lem-
ma 4.3 hold. Then J(q,u) admits its optimal control if Q, is compact.

Proof. Let mp = infyeu,, SUPgeq, J(g, u). Since g(t,y,u) < oo for all
(t,y,u) € [0,T] x H xY and by (Hg)(4), this is well-defined and my is
finite. Define

Jo(u) = sup J(g, u),
q€Q~
then, by Theorem 4, p.122 of Berge [9], © — Jy(u) is lower semicontinous
from U,y to R. Let {u,} C U,4 be a minimizing sequence, that is,

lim Jo(upn) = mo.
m—00

Since U,q is compact, there exist a subsequence, relabeled as u,, and an
@ € U,q such that u, — 4. Then we have

mo < Jo(2) < hmmf Jo(un) = my.

Consider the functional Jo(%) = sup,eq. fo g(t,y(q, @), u)dt. By Lemma
4.1 and (Hg), there exists § € @, such that
(4.13)

T
JO(U = sup / f(t y(Q) _)dt = /(; f(tvy(Qv i],),’a)dt = J(q’ ﬂ)

9€Q,
because (), is compact. This completes the theorem. O
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