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A GENERALIZATION OF A
SUBSET-SUM-DISTINCT SEQUENCE

JAEGUG BAE AND SUNGIIN CHOI

ABSTRACT. In 1967, as an answer to the question of P. Erdés on
a set of integers having distinct subset sums, J. Conway and R.
Guy constructed an interesting sequence of sets of integers. They
conjectured that these sets have distinct subset sums and that they
are close to the best possible with respect to the largest element.
About 30 years later (in 1996), T. Bohman could prove that sets
from the Conway-Guy sequence actually have distinct subset sums.
In this paper, we generalize the concept of subset-sum-distinctness
to k-SSD, the k-fold version. The classical subset-sum-distinct
sets would be 1-SSD in our definition. We prove that similarly
derived sequences as the Conway-Guy sequence are k-SSD.

1. Introduction

We begin the paper with an interesting puzzle: suppose there are six
piles of money, each consisting of 100 silver coins. All the coins in one
pile are counterfeit, but we do not know which pile it is. We know the
correct weight of a legal coin, and we know that the counterfeit coin
weighs one gram less than a genuine one. Using a spring scale, identify
the pile of counterfeit coins by only one weighing.

The answer for this puzzle is easy: after numbering each pile from 1
to 6, choose i coins from each ¢th pile, 1 < i < 6. Weighing them all
together, one can tell the pile of counterfeit coins. For example, if it lacks
5 grams of the expected weight of 21 (= 14+2+3+4+45+6) legal coins,
then the fifth pile is the counterfeit. Let us change the puzzle a little:
all conditions are the same as above but we do not know how many piles
are counterfeit. At this time, one may choose 2! coins from ith pile
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for 1 <i < 6. Weighing them together, if it lacks 5 (= 1 + 22) grams
of the expected weight, the first and the third piles are the counterfeit.

When we consider the changed puzzle with the constraint that every
pile has only 24 coins, we arrive at the concept of “distinct subset sums”.
A set of real numbers is said to have distinct subset sums if no two finite
subsets have the same sum. To be precise, we define

DEFINITION 1.1. (i) Let A be a set of real numbers. We say that A
has the subset-sum-distinct property (briefly SSD-property) if for any
two finite subsets X, Y of A,

Zx:Zy = X=Y.

Also, we say that A is SSD or A is an SSD-set if it has the SSD-
property.

(ii) A sequence of positive integers {a,}oe; is called a subset-sum-
distinct sequence (or briefly, an SSD-sequence) if it has the SSD-proper-
ty.

With this terminology, to answer for the final puzzle, we just need an
SSD-set of six positive integers whose greatest element is less than or
equal to 24. In other words, we are very interested in a “dense” SSD-
set. In fact, problems related to dense SSD-sets have been considered
by many mathematicians in various contexts (see (1, pp.47-48], [2]-[10],
[11, pp.59-60], [12, p.114, problem C8], [13]-[16]). The greedy algorithm
generates one of the most natural SSD-sequence {1,2,22,23,...} which
is quite sparse. In 1967, on the request of “dense” SSD-sets, John Con-
way and Richard Guy constructed so called “Conway-Guy sequence” as
following ([13]). First, define an auxiliary sequence u, by

ug=0,u; =1 and upy1 =2u, —up—p, n=1

where r = (v/2n), the nearest integer to +/2n. Now, for a given posi-
tive integer n, we define

a; =Up — Un—j, 1 <1< N

The well known Conway-Guy conjecture is that {a; : 1 <¢ < n} is
SSD for any positive integer n. F. Lunnon showed numerically that
they are SSD-sets for n < 80 (see [16, p.307, Theorem 4.6]) and the
conjecture was completely resolved affirmatively by T. Bohman in 1996
(see [6]).

Note that, in the last modified puzzle, the Conway-Guy sequence
gives the unique answer {11,17,20,22,23,24} when n =6.
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2. A generalization

Consider the puzzle of counterfeit coin in the introduction again. This
time, we assume that each pile has 169 coins and we know that a coun-
terfeit coin weighs one or two grams less than a genuine one. Also
we know that any two coins in the same pile have the same weight.
But we do not know how many piles are counterfeit. In this case, we

need a set S = {ay,aq,as3,a4,as5 a6} of positive integers such that
6

1<a; <ay <az <ag <as <ag <169 and all sums Zeiai are
i=1

different when each integer ¢; varies from 0 to 2. This means that
S is not only subset-sum-distinct but also 2-fold subset-sum-distinct.
We define these concepts in full generalization.

DEFINITION 2.1. (i) For aset A of real numbers, we say that A
has the k-fold subset-sum-distinct property (briefly k-SSD-property) if
for any two finite subsets X, ¥ of A,

Zem-x: Zey-y for some €, €, € {1,2,... ,k} implies X =Y.
zeX yey

Also, we say that A is k-SSD or A is a k-SSD-set if it has the
k-SSD-property.

(ii) A sequence of positive integers {a,}52, iscalled a k-fold subset-
sum-distinct sequence (briefly, k-SSD-sequence) if it has the k-SSD-
property.

Note that a classical SSD-set is just a 1-SSD-set. Note also that the
greedy algorithm produces the k-SSD-sequence 1,k+1,(k+ )%, (k+
1)3,....

For the answer of above puzzle, we need a 2-SSD-set of six elements
with minimal height. Lots of calculations shows that {109, 147,161, 166,
168,169} is the unique answer. That is, after choosing 109, 147, 161,
166, 168, 169 coins from the piles, respectively, one weighs them to-
gether. If the scale indicates, for example, 722 (= 2-109 + 166 + 2 -
169) grams less than the expected weight of 920 (= 109 + 147 + 161 +
166 + 168 + 169) genuine coins, one can conclude that every coin in the
fourth pile lacks one gram and every coin in the first and the sixth piles
lacks two grams.

To obtain dense k-SSD-sets, we immitate the construction of the
Conway-Guy sequence. Following Bohman ([6]), we use the difference



760 Jaegug Bae and Sungjin Choi

sequence d(n) instead of using the auxiliary sequence u(n). For n >
1, define b(n) = (y/2(n — 1)), the nearest integer to 1/2(n —1). Also,
define d(1) =1 and

d(n) = i d(i).

i=n—>b(n)

Then the sets in the Conway-Guy sequence are

Sn=14> d(@)]j=1,2,...,n
i=j

DEFINITION 2.2. (A generalization of the Conway-Guy sequence)
For an integer k > 1, we define di(1) = 1, S} = {dx(1) = 1} and
for n>1,

n-1 n

di(m)= Y k-di()), Sp=({> d(@®li=12...,n}.
i=n—>b(n) i=j

Note that previously defined d(n), S, is simply di(n), ST, respect-

ively.

Here we enumerate the first few terms of these sequences:
b(n):0,1, 2, 2,3, 3,3,4,4,4,4,5,5, ...
di(n):1, 1, 2, 3, 6, 11, 20, 40, 77, 148, 285, 570, ...
St={1}, S2={2, 1}, S$ =14, 3, 2}, St={7, 6, 5, 3},
S? ={13, 12, 11, 9, 6}, S% = {24, 23, 22, 20, 17, 11},...

da(n) : 1, 2, 6, 16, 48, 140, 408, 1224, ...
Sy ={1}, S =1{3, 2}, S5 ={9, 8, 6}, S5 = {25, 24, 22, 16},...

di(n): 1, k, k(k+1), k2(k+2),...
SE={1}, 82 ={k+1, k}, S3={(k+1)%, k(k+2), k(k+1)},
Se={k3+3k*+2k+1, k3 +3k% + 2k, k° +3k2 +k, k% +2Kk%},....

One can ask about the size of the largest element of the set Sy . For
k = 1, Erdos and Moser showed that the largest element of ST had
a lower bound C -2"//n for some positive constant C (see [2, p.36,
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Theorem 3.2], [13, p.142]). We note that, using a modified idea of Moser,
one can show the largest element of S}’ has a lower bound

k if k isodd

k—1 if k iseven

(K +1)"
PN

and C is a positive constant which is absolutely independent of &k

and n. For an acute upper bound of f(n) = min{maxS : |S| =
n and S is 1-SSD}, T. Bohman introduced many variations of the
Conway-Guy construction (see [7]). We believe that his method can
be validly applied on the k-SSD setting after appropriate defining of
b-sequences and d-sequences.

Lastly, as we mentioned in the introduction, T. Bohman showed
SP is 1-SSD for any positive integer n (see [6, p.3630, Theorem 1J).
In the next section, by modifying Bohman’s idea a little, we will prove
that ST is k-SSD for any positive integers £ and n.

C. where k' = {

3. Main theorem

We prove our main theorem that S7 is k-SSD for any positive inte-
gers k and n. First, by a vector, we mean an element of N°° where
N is the set of all positive integres.

DEeFINITION 3.1. Let v be a vector.

(i) We say that v is an n-dimensional if n is the largest integer
such that wv(n) # 0.

(ii) An n-dimensional vector v iscalled k-smoothif |v(1)| < k and
|v(i) —v(i+1)| <k forall i€{1,2,...,n—1}.

(iii) For an arbitrary set S = {a, > ap—3 > -+ > a2 > a1} of
positive integers, we define the n-dimensional difference vector dgs by
dS = (an —Qp—1,0p-1 — Ap—2,... ,02 — alaahoaoaov cee )

The following lemma gives an equivalent condition for a set to be

k-SSD.

LEMMA 3.2. Let S be a set of n positive integers. Then S is
k-SSD if and only if there exists no nonzero, k-smooth, n-dimensional
vector v such that the inner product v-dg = 0.

Proof. (=) Let S ={an > an-1 > -+ > az > a1}. Suppose there
exists a nonzero. k-smooth. n-dimensional vector v such that the
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inner product v-dg = 0. Then we have
0=wv-dg
=v(1)(an — an-1) + v(2)(an—1 — an—2) + - --
+ v(n—1)(az — a1) + v(n) a;
=v(l)a, + (v(2) —v(1)) ap—1+ - + (v(n) —v(n — 1)) ay.
Since v is a nonzero n-dimensional vector, not all the coefficients of
the a;’s in the last expression are zero. This implies S is not k-SSD.

(«=) Suppose S is not k-SSD. Then we can find two disjoint subsets
X, Y of S, such that

Zex-x—Zeyoyzo for some e, €, € {1,2,... ,k}.
zeX yey

For appropriate choices of o and 3y, we have

z=> ds(i), y=) ds(i).

=0y i=0y

Notice that the a,’s and 3,’s are all distinct. We can write

Z €x Z ds(i) — Z €y Z ds(i) = 0.

ze€X i=ax yeY =0,

In order to reverse the order of summation, we must count how many
times each dg(i) appears in this summation. This is achieved by set-

ting
v(j) = Z €x — Zey for 1<j<n.
oz <j By<Jj
Also, set v(j) =0 forall j >n. Then v-dg is the sum on the left
hand side of the above equation, and v is k-smooth by the distictness
of the a;’s and f,’s. d

LEMMA 3.3. The sequence {n —b(n)}S>, is non-decreasing for n =
1, 2, 3,....

Proof. By using simple induction, we see immediately that {n —
b(n)}2, is non-decreasing. O
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LEMMA 3.4. For k > 1, di(n)+k- Y di(i) < di(n+2) for all
i=1

n>1

Proof. We use an induction on n. When n =1, we have di(1)+
Ede(l) =1+ k < k(k+1) = di(3). Assume di(n) + kY, di(i) <
di(n+2). Since

n

diln+1) = > di(i)
i=n+1-b(n+1)

n—1

= Y di() +dy(n)

i=n+1—b(n+1)

n—1
< Z dl(z) -+ dl(n) =2 dl(n) y

i=n—b(n)

we know that di(n+1) < 2dg(n)+(k—1)di(n+2) forall k> 1. Thus

n+1

di(n+1) + k&Y di(i)

i=1

= dk(n—l- 1) + kdk(n-i- 1) + kidk(l)
i=1
< dk(n + 1) + kdk(n + 1) + dk(n + 2) — dk(n)
< 2di(n) + (k= 1) di(n+2) + kdi(n+ 1) +di(n +2) — di(n)
< kdk(n) + kdk(n—!- 1) + kdk(n+ 2)
n+42

< ) kdk() = de(n+3)
i=n+3—b(n+3)

where the last inequality follows from the fact that b(n + 3) is at least
dfor n>2. O

LEMMA 3.5. If v is an n-dimensional k-smooth vector such that
[v(n)] <k, then v-dip <dp(n+1)+di(n+2).
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Proof. We go by inductionon n. For n=1, v-dp =v(1)-dp(1) =
v(l) <k < k+k(k+1) = dp(2) + di(3). Define 2(i) = max{v(¢) —
k, 0} for i > 1. Note z(1) = 0. We show that z is k-smooth. Put
0 = 2(i) — 2(i+1) = max {v(i) — k, 0} —max {v(:+1)—k, 0}. Suppose
at first that 2(¢) = 0 or equivalently that v(i) < k. Then we have
v(i+1) —k < v(i) < k from the smoothness of v. Hence [§] =
max{v(i+1) —k, 0} < k. Secondly, suppose z(i) =v(i) —k or v(i) >
k. If 2(i+1) = max {v(i+1) -k, 0} = v(i+ 1) —k, then [0 =
[v(i) ~k—(v(i+1) k)| = |[v(i) —v(i+1)| < k. If 2(i+1) = max {v(i+
1) — k, 0} = 0, then k < v(i) < v(i + 1) + k < 2k which implies
0<wv(i)—k <k or |[0] =|v(i)—k| < k. Therefore the k-smoothness of
z isshown. Note z(n) =0 and |z(n—1)| < k. Hence by applying the
inductive hypothesis to the n—1 components of the vector z, we get
z-dy < dg(n)+di(n+1). Letting k= (k, k, &k, k,...,%,0,0,0,...) of
n — 1 dimension, we obtain

U-dk=(’v—]z¢)'dk+lzt-dk
<z dp+v(n)di(n) +k-dp <z dp+kdp(n) +k-dy

<di(n) +di(n+1) + kde(i)
=1

<dg(n+1)+dp(n+2).
The last inequality follows from Lemma 3.4. [l

THEOREM 3.6. For all m > 1, S is k-SSD.

Proof. By Lemma 3.2, it suffices to prove that
(3.1) v - dk 7é 0

for any nonzero k-smooth vector w». Again we use an induction on
the dimension of v. Assume that (3.1) is true for any nonzero k-
smooth vector of dimension m —1. Let dim(v) =m. We may assume
v(m) > 0. We will construct m — 1 vectors wp,,Wm-1,...,wW2 such
that for all ¢ € {2,3,...,m},

(1) wi(d) =v(j) for j =1,

(iii) w; is not k-smooth.
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Once these are constructed, since wq - di = 0 and v differs from
wg in the first component only, the third property (iii) shows that
v -dg # 0. First, we define vectors X5, X3, X4,... by

1 if i=j
Xi(j)=4 ~k i i-b@H)<j<i-1
0 otherwise

where ¢ > 2. Also we define pn, = v(m), Wy = pmXm, pi = v(i) —
wei+1)(8), wi = wipr +piX; for i=m—1,m—2,...,2. Note that the
vectors X;’s are defined so that X;-d, = 0. Since w;’s are just linear
combinations of X,’s, one can easily see the properties (i) and (ii). O

CLamM 1. For i €{2,3,4,... ,m}, w(j) =2 ", mXi(5)-

Proof. Let’s use the reverse inductionon i =m,m—-1,m-2,...,2.
For ¢ = m, we immediately have w,(j) = pmXm(j) from the defi-
nition. Assuming wi1(j) = Y0, mXi(j), we see that w;(j) =

wit1(5) +piXi(F) = Yt X () + 0 X (4) = % mXa () g

CLAamM 2. For m—b(m)<i<m-—1, p;>0.

Proof. Suppose inductively that p;y1,...,pm > 0. Then
wi+1(2) = Z p;iX;(1) = —k Z pj < —k(m —1i).
j=itl j=it1

Since v(m) > 1, we have p; = v(i) — w;i+1(¢) > v(i) + k(m — i)
1—k(m—1i)+k(m—1i) =1

EAY

CrAaw 3. If pgy... ,pm >0, then w; is not k-smooth.

Proof. If m —b(m) <t <m-—1, then wy(t—1)=—-k3 7", p; and
wi(t) = wer1(t) + peXe(t) = pe — kXL, pj - Thus wy(t) — we(t —
1) = (k 4+ 1)p: > k which means that w; is not k-smooth. Suppose
t < m—b(m).

(1) If t=2, then m >4 and wa(1) = —k(p2 + p3) < —k. Hence
wi(= ws) is not k-smooth.

(2) If t =3, then m > 6 and ws(1l) = —kps, w3(2) = —~k(p3 +
pa + ps). Thus ws(1) —w3(2) = k(pa + ps) > k and so w: (= ws) is
not k-smooth.
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(3) If 4 <t < m-—b(m), then we define c(u) = max{j|j — b(j) <
u}. Note t—b(t)—1>1 and
(3.2)
if 1<i<t—bt)

=3 pxii) =1 "
Wl ) = 1} =
t l=tpll ko i t-b(t)<i<t-1.

Since c(k) is strictly increasing, wg(t—b(t)),... ,w(t—1) is a strictly
decreasing sequence of negative numbers. We will show that there exists
s such that

(3.3)

t—-b(t)-1<s<t—2 and c(s+1)=c(s)+2 and c(s+1)>t+1.

If s=1— b(t) — 1, then U}t(S) = ( and wt(s + 1) kZC(S+1)
-~k Efil o1 < —2k. Hence wi(s + 1) < wy(s) — 2k and so w; is not
k-smooth. If ¢ —b(t) < s <t—1, then we obtain

c(s+1) c(s)+2
s+1——kZp1 —kZpl
=t

c(s)
= -kzpl —kpe(sy+1 — kpes)+2 S wi(s) — 2k

=t

whence w; is not k-smooth again.

Now, it remains to show the existence of such an s. Let y = c¢(t —
1). Note y <m. Since y+1—b(y+1) >¢—1, we have b(y+1) =
b(y). Applying the fact that b(n — b(n)) < b(n) for all n > 2, we get
b(t) =bly+1—by+1)) <bly+1)=>b(y). Hence there exists u such
that t <u <y and b(u+1) =b(u)+1. Taking s =u—b(u)—1, we see
t—b(t)—1<s=u—-bu)—1<y—-bly)—1<t—-1-1=1¢-2. Also, note
bu+1)=bu)+1 = 1-blu+1)<-blu) = u+1-blu+l)<
u—bu)=s+1 = u+1<c(s+1) = t+1<ce(s+1). Since
c(s+1)=u+1and ¢(s)=u—1, weget c(s+1)=c(s)+2. O

CLAIM 4. If there exists i such that 1 < i < m, p; < 0 then
V- dk 7é 0.

Proof. Choose t sothat p; >0 for t<i<m and p; 1 <0. By
claim 2, t<m —b(m). If t=3 ,then m >6 and w3(2) = —k(ps +
ps + ps). Since v is k-smooth, we have v(2) > —2k > w3(2). But
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0> p2 = v(2) — w3(2) implies w3(2) > v(2), a contradiction. Hence
we may assume 4 < t < m — b(m) whence (3.2) and (3.3) hold.
In claim 3, we proved that w;(i) = 0 for 1 < ¢ < t—b(t) and
w(t — b(t)),... ,w(t — 1) is a strictly decreasing sequence of negative
numbers and there exists s with ¢t —b(t) -1 <s<t—2 and w(s)—

Now consider the vector z = v — w;. Note that z-dx = v-dg —
wy - d, = v - dg. Also, by the property (i) of w:, we have z(i) =0
for ¢ >t Since 0> piy = v(t — 1) —w(t — 1), we get v(t—1) <
wg(t — 1). Observing (3.2) for ¢ = ¢t — b(t) — 1, we have a strictly
decreasing sequence

we(t —b(t) — 1) > we(t —b(t)) > -+ > w(t — 2) > wy(t — 1)

with the gaps of positive multiples of k. Combining k-smoothness of
v with the fact v(t — 1) < w(t — 1), we have v(i) < wq(¢) for all
i such that ¢t —b(t) —1 < ¢ <t — 1. Furthermore, the existence of
the double jump between w;i(s) and w:(s+ 1) implies that w:(i) >
v(i) for all t—b(t) ~1 < i< s. Hence we have

(.){<0 if t—bt)—1<i<s
1
<0 ift-bt)-1<i<t—1.

For 1<i<t—b(t)—1, since wi(i) =0 andso z(i)=uv(i), we see
that z is k-smooth on this interval. If 2(i) < 0 for all ¢ <'s, then
clearly 0 > z-dy = v-di. Suppose there exists some i < t—b(t)—1 with
z(i) > 0. Let ¢ = max{t < t —b(t) —1]2(¢) > 0} and let y =
(2(1), 2(2),...,2(¢),0,0,...). Then y is a k-smooth g¢-dimensional
vector. We consider two cases seperately:

Case 1. There exists » > g+ 1 such that z(r) <0.

Applying Lemma 3.5 to the ¢-dimensional vector y, we have 0 >
yodp—dr(q+1) —dir(g+2) > y-dp—di(g+1) —di(r) > z-dx = v-dy.

Case 2. Forall r>q+1, z(r)=0.
In this case, we have s = q+1 = t—b(t)—1. Hence z(i) =v(i) for 1<
i<q+1and 2(i)=0 for ¢ >g+1 andso z is (q+ 1)-dimensional
k-smooth vector. Note ¢+ 1=1t—~b(t) —1 <t -2 < m. Thus by the
induction (on m), z-dg(=v-di) #0. d
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