DOI QR코드

DOI QR Code

Characterization and functional analysis of a myo-inositol 1-phosphate synthase cDNA in sesame (Sesamum indicum L.)

참깨 myo-inositol 1-phosphate synthase 유전자의 특성과 기능분석에 관한 연구

  • 진언호 (동아대학교 응용생명공학부 생명공학과) ;
  • 천재안 (동아대학교 응용생명공학부 생명공학과) ;
  • 정정한 (동아대학교 응용생명공학부 생명공학과)
  • Published : 2003.08.01

Abstract

A cDNA (SeMIPS) encoding myo-inositol 1-phosphate synthase has been isolated from developing sesame (Sesamum indicum L. cv. Dan-Baek) seeds and its structure and function analyzed. The SeMIPS protein was highly homologous with those from plant species (88-94%), while a much lower degree of sequence homology (60%) was found with that of human. The functional domains commonly found in MIPS protein were identified and their amino acid residues were compared with each other. Northern blot indicated that the expression of the SeMIPS gene might be organ-specifically regulated. A complementation assay based on a yeast mutant system confirmed that the SeMIPS gene encodes a myo-inositol 1-phosphate synthase (MIPS) of sesame by showing functional expression of the SeMIPS cDNA in the yeast mutants containing the disrupted INO1 gene.

1845 bp의 SeMIPS cDNA를 발육종자에서 분리하고 이 cDNA의 구조와 특성을 분석하였다. 이 cDNA는 엽록체로 향하는 신호펩타이드의 아미노산 서열이 존재하지 않아서 세포질형 MIPS로 예상되었다. 또한 이 cDNA의 아미노산 서열의 유사성은 다른 MIPS와 비교한 결과 60-94%의 높은 아미노산 서열 유사성을 보여주었으며, 특히 식물끼리의 유사성이 훨씬 높았다. Northern blot분석에서 볼 때 참깨의 조직별 SeMIPS mRNA는 완숙종자, 줄기, 뿌리에서는 약하게 발현되었고, 잎에서는 비교적 강하게 발현되는 현상을 보여주었다. Yeast 돌연변이체를 통한 활성 시험에서는 SeMIPS가 myo-inositol 1-phosphate synthase의 효소활성을 가지고 있다는 실험적 증거를 얻었으며, C-말단 아미노산 20개가 효소활성에 필수적이라는 사실이 본 실험에서 검증되었다.

Keywords

References

  1. Bachhawat N, Mande SC. 1999. Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 29, 531-536. https://doi.org/10.1016/0022-2836(67)90118-0
  2. Blumwald E. 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12, 431-434. https://doi.org/10.1016/S0955-0674(00)00112-5
  3. Bohnert HJ and Sheveleva E. 1998. Plant stress adaptatioins-making metabolism move. Curr. Opin. Plant Biol. 1, 267-274. https://doi.org/10.1016/S1369-5266(98)80115-5
  4. Burssens S, Himanen K, van de Cotte B, Beeckman T, Montagu MV, Inze D, and Verbruggen N. 2000. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211, 632-640. https://doi.org/10.1007/s004250000334
  5. Chung CH, Kwon OC, Lee YM, Lee SY. 1996. An improved method for isolating high quality polysaccharide-free RNA from tenacious plant tissues. Mol. Cells 6, 108-111.
  6. Chung CH, Kwon OC, Yi YB, Lee SY. 1998. Isolation of quality genomic DNA from tenacious seeds of sesame and perilla. Plant Tissue Cult. Biotech. 4, 42-48.
  7. Hegeman CE, Good LL, and Grabau EA. 2001. Expression of D-myo-inositol 3-phosphate synthasein soybean. Implication for phytic acid biosynthesis. Plant Physiol. 125, 1941-1948. https://doi.org/10.1104/pp.125.4.1941
  8. Iqbal M. J., A. J. Afzal, S. Yaegashi, E. Ruben, K. Triwitayakorn, V. N. Njiti, R. Ashan, A. J. Wood, and D. A. Lightfoot. 2002. A pyramid of loci for partial resistance to Fusarium solani f. sp. glycines maintains myo-inositol 1-phosphate synthase expression in soybean roots. Theor. Appl. Genet. 105, 1115-1123. https://doi.org/10.1007/s00122-002-0987-0
  9. Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ. 1996. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9, 537-548. https://doi.org/10.1046/j.1365-313X.1996.09040537.x
  10. Johnson MD, Sussex IM. 1995. 1L-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant Physiol. 107, 613-619.
  11. Johnson MD and Wang X. 1996. Differentially expressed forms of 1L-myo-inositol 1-phosphate synthase (EC 5.5.1.4) in Phaseolus vulgaris. J. Biol. Chem. 271, 17215-17218. https://doi.org/10.1074/jbc.271.29.17215
  12. Larson SR and Raboy V. 1999. Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: correspondence with a low phytic acid mutation. Theor. Appl. Genet. 99, 27-36. https://doi.org/10.1007/s001220051205
  13. Loewus FA and Murthy PPN. 2000. myo-inositol metabolism in plants. Plant Sci. 150, 1-19. https://doi.org/10.1016/S0168-9452(99)00150-8
  14. Majumder AL, Johnson MD, and Henry SA. 1997. 1Lmyo-inositol 1-phosphate synthase. Biochim. Biophys. Acta 1348, 245-256. https://doi.org/10.1016/S0005-2760(97)00122-7
  15. Nelson DE, Koukoumanos M, Bohnert HJ. 1999. Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol. 119, 165-172. https://doi.org/10.1104/pp.119.1.165
  16. Nelson DE, Rammesmayer G, Bohnert HJ. 1998. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10, 753-764. https://doi.org/10.1105/tpc.10.5.753
  17. Park DK, Jeong SY, Lee SS, Park SH, Kim JI, and Yim JB. 2000. Molecular characterization of Drosophila melanogaster myo-inositol 1-phosphate synthase. Biochim. Biophys. Acta 1494, 277-281. https://doi.org/10.1016/S0167-4781(00)00085-3
  18. Quesada V, Ponce MR, Micol JL. 2000. Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154, 421-436.
  19. RayChaudhuri A, Hait NC, DasGupta S, Bhaduri TJ, Deb R, Majumder AL. 1997. L-myo-Inositol 1-phosphate synthase from plant sources. Plant Physiol. 115, 727-736.
  20. RayChaudhuri A, Majumder AL. 1996. Salinityinduced enhancement of L-myo-inositol 1-phosphate synthase in rice (Oriyza sativa L.). Plant Cell Environ. 19, 37-1442.
  21. Shen X, Xiao H, Ranallo R, Wu WH, Wu C. 2003. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 3; 299 (5603), 112-114.
  22. Tomas W. Christianson, et al. 1992. Multifunctional yeast high-copy number shuttle vector. Gene. 110, 119-122. https://doi.org/10.1016/0378-1119(92)90454-W
  23. Wei JZ, Tirajoh A, Effendy J, Plant AL. 2000. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci. 159, 135-148. https://doi.org/10.1016/S0168-9452(00)00344-7