DOI QR코드

DOI QR Code

A Comparison of Confidence Intervals for the Difference of Proportions

모비율 차이의 신뢰구간들에 대한 비교연구

  • 정형철 (평택대학교 정보통계학과) ;
  • 전명식 (고려대학교 통계학과) ;
  • 김대학 (대구가톨릭대학교 정보통계학과)
  • Published : 2003.09.01

Abstract

Several confidence interval estimates for the difference of two binomial proportions were introduced. Bootstrap confidence interval is also suggested. We examined the over estimation property of approximate intervals and under estimation trend of exact intervals for the difference of proportions. We compared these confidence intervals based on the average coverage probability, expected width and skewness measure. Particularly actual coverage probability were calculated by using the prior distribution of parameters. Monte Carlo simulation for small sample size is conducted. Some interesting contour plots of average coverage probability and marginal plots for several interval estimates are presented.

본 논문에서는 두 모비율의 차에 대한 기존의 신뢰구간들을 소개하고 붓스트랩 신뢰구간도 제안하였다 또한 모비율의 차에 대한 신뢰구간이 가지는 성질로서 근사신뢰구간의 하향추정의 문제와 정확신뢰구간의 상향추정의 문제점들을 확인하였고 평균포함 확률, 구간기대폭 그리고 왜도성 측면에서 종합적인 비교를 하였다. 특히 모수에 대한 사전분포를 가정하여 여러 신뢰구간들이 지니는 특징도 살펴보았다 기존의 신뢰구간들과 제안된 붓스트랩 신뢰구간은 소표본의 모의실험을 통하여 실제 포함확률의 평균을 기준으로 비교되었고 이항분포에서와 같이 정확신뢰구간이 지니는 보수성을 확인할 수 있었다. 신뢰구간의 평균포함확률의 등고선 그림도 소개하였다.

Keywords

References

  1. The American Statistician v.52 Approximate is better than Exact for interval estimation of binomial proportions Agresti,A.;Coull,B. https://doi.org/10.2307/2685469
  2. Biometrics v.39 On estimating the difference between two probabilities with special reference to clinical trials Anbar,D. https://doi.org/10.2307/2530826
  3. Nature A new test for 2×2 tables Barnard,G.A.
  4. Biometrics v.43 Asymptotic confidence intervals for the difference between two binomial parameters for use with small samples Beal,S.L. https://doi.org/10.2307/2531547
  5. Journal of the American Statistical Association v.89 p values maximized over a confidence set for the nuisance parameter Berger,R.;Boos,D. https://doi.org/10.2307/2290928
  6. Journal of the American Statistical Association v.78 Binomial Confidence Intervals Blyth,C.;Still,H. https://doi.org/10.2307/2287116
  7. Biometrika v.64 Tests and confidence intervals for the difference and ratio of two probabilities Buhrman,J.M. https://doi.org/10.1093/biomet/64.1.160
  8. The annals of Statistics v.7 Bootstrap Methods: Another look at the Jackknife Efron,B. https://doi.org/10.1214/aos/1176344552
  9. Biometrics v.46 Approximate interval estimation of the difference in binomial parameters: correction for skewness and extension to multiple tables Gart,J.J.;Nam,J.M. https://doi.org/10.2307/2532084
  10. Biometrika v.33 On a method of estimating frequencies Haldane,J.B.S. https://doi.org/10.1093/biomet/33.3.222
  11. Biometrics v.40 Confidence bounds for the difference between two probabilities Mee,R.
  12. Statistics in Medicine v.4 Comparative analysis of two rates Miettinen,O.;Nurminen,M. https://doi.org/10.1002/sim.4780040211
  13. Statistics in Medicine v.17 Two-sided confidence intervals for the single proportion: Comparison of seven methods Newcombe https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
  14. Statistics in Medicine v.17 Interval estimation for the difference between independent proportions: Comparison of eleven methods Newcombe https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
  15. Journal of the American Statistical Association v.75 Small-sample confidence intervals for $p_1$- $p_2$and $p_1$/$p_2$ in 2×2 contingency tables Santner,T.J.;Snell,M.K. https://doi.org/10.2307/2287464
  16. A Statistical Package for Exact Nonparametric Inference StatXact
  17. Journal of the American Statistical Association v.72 A Table of Exact Confidence Limits for Differences and Ratios of Two Proportions and Their Odds Ratios Thomas,D.G.;Gart,J.J. https://doi.org/10.2307/2286908
  18. Statistics in Medicine v.12 Confidence intervals for a binomial proportion Vollset,S.E. https://doi.org/10.1002/sim.4780120902
  19. Statistics and Probability Letters v.7 Singh's theorem in the lattice case Woodroofe,M.;Jhun,M.