초록
서포트 벡터 기계(Support Vector Machines, SVMs)에서의 일반화 오차의 경계는 훈련점들과 분리 초평면 사이의 최소의 거리에 의존한다. 특히, 소프트 마진 알고리즘은 목표 마진과 slack 벡터의 놈들에 의하여 경계가 결정된다. 이 논문에서는, 자료들에 있어서 잡음들에 의한 오염들을 직접적으로 고려하는 새로운 소프트 마진 알고리즘을 공식화하였다. 그리고, 수치적 예제를 통하여, 제안된 방법과 기존의 소프트 마진 알고리즘을 비교하였다.
Support Vector Machines (SVMs) provide a powerful performance of the learning system. Generally, SVMs tend to make overfitting. For the purpose of overcoming this difficulty, the definition of soft margin has been introduced. In this case, it causes another difficulty to decide the weight for slack variables reflecting soft margin classifiers. Especially, the error of soft margin algorithm can be bounded by a target margin and some norms of the slack vector. In this paper, we formulate a new soft margin algorithm considering the bound of corruption by noise in data directly. Additionally, through a numerical example, we compare the proposed method with a conventional soft margin algorithm.