Convection in the growth of zinc telluride single crystal by physical vapor transport

  • Kim, Geug-Tae (Department of Chemical Engineering, Hannam University)
  • 발행 : 2003.08.01

초록

Zinc selenide (ZnSe) single crystals hold promise for many electro-optics, acousto-optic and green laser generation applications. This material is prepared in closed ampoules by the physical vapor transport (PVT) growth method based on the dissociative sublimation. We investigate the effects of diffusive-convection on the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration. Our results show that for the ratios of partial pressures, s=0.2 and 2.9, the growth rate increases with the Peclet number and the temperature differences between the source and crystal. As the ratio of partial pressures approaches the stoichiometric value of 2, the rate increases. The mass fluk based on one dimensional (1D model) flow for low vapor pressure system fall within the range of the predictions (2D model) obtained by solving the coupled set of conservation equations, which indicates the flow fields would be advective-diffusive. Therefore, the rate and the flow fields are independent of gravity acceleration levels.

키워드

참고문헌

  1. J. Crystal Growth v.101 Conductivity control of ZnSe grown by MOVPE and its application for blue electroluminescense H.Kukimoto https://doi.org/10.1016/0022-0248(90)91113-5
  2. J. Crystal Gowth v.101 Optically bistable thin film devices using widegap Ⅱ-Ⅵ compounds H.J.Eichler;V.Glaw;A.Kummrow;V.Penschke;Wahi https://doi.org/10.1016/0022-0248(90)91061-T
  3. Appl. Phys. Lett. v.63 S.Guha;J.M.DePuydt;M.A.Hasse;J.Qiu;H.Cheng https://doi.org/10.1063/1.110218
  4. Appl. Phys.Lett v.59 M.A.Hasse;J.M.DePuydt;H.Chen https://doi.org/10.1063/1.105472
  5. Appl. Phys. Lett. v.60 H.Jeon;J.Ding;A.V.Nurmikko;W.Xie;D.C.Grillo;M.Kobayashi;R.L.Gunshor;G.C.Hua;N.Otsuka https://doi.org/10.1063/1.107109
  6. J. Crystal Growth v.6 W.C.Holton;R.K.Watts;R.D.Stinedurf;Eichler https://doi.org/10.1016/0022-0248(69)90099-2
  7. J. Crystal Growth v.30 Polytype single crystals of $Zn_{1-x}Cd_xS$ and $ZnS_{1-x}Se_x$ solid solutions grown from the melt under high argon pressure by bridgmans method M.J.Kozielski https://doi.org/10.1016/0022-0248(75)90203-1
  8. J. Crystal Growth v.41 Melt growth of ZnSe crystals under argon pressures I.Kikuma;M.Furukoshi https://doi.org/10.1016/0022-0248(77)90103-8
  9. J. Crystal Growth v.84 Growth and characterization of ZnSe single crystals by closed tube methods C.C.Chang;C.C.Wei;Y.K.Su;H.C.Tzeng https://doi.org/10.1016/0022-0248(87)90110-2
  10. J. Crystal Growth v.84 Morphology and photoluminescence (PL) of ZnSe single crystals grown frm Se and/or as solvents K.Mochizuki;K.Masumoto;H.Iwanaga https://doi.org/10.1016/0022-0248(87)90108-4
  11. J. Crystal Growth v.42 Studies on the vapout growth of ZnS, ZnSe and ZnTe single crystals H.Hartmann https://doi.org/10.1016/0022-0248(77)90187-7
  12. J. Crystal Growth v.60 Growth of ZnS and $Zn_{1-x}Cd_xS$(x < 0.07) single crystas by iodine transport W.Palosz https://doi.org/10.1016/0022-0248(82)90172-5
  13. J. Crystal Growth v.146 Zine selenide single crystal growth by chemical transport reactions K.Bottcher;H.Hartmann https://doi.org/10.1016/0022-0248(94)00471-4
  14. J. Crystal Growth v.47 Growth of single crystals of zinc selenide from the vapor phase J.R.Cutter;J.Woods https://doi.org/10.1016/0022-0248(79)90206-9
  15. J. Crystal Growth v.96 The growth of ZnSe single crystals by physical vapor transport H.Y.Cheng;E.E,Anderson https://doi.org/10.1016/0022-0248(89)90632-5
  16. J. Crystal Growth v.161 Vapour and characterization of bulk ZnSe single crystals Yu.U.Korostelin;V.I.Kozlovsky;A.S.Nasibov;P.V.Shapkin https://doi.org/10.1016/0022-0248(95)00611-7
  17. J. Crystal Growth v.209 In situ partial pressure measurements and visual observation during crystal growth of ZnSe by seeded physical vapor transport C.H.Su;S.Feth;S.L.Lehoczky https://doi.org/10.1016/S0022-0248(99)00631-4
  18. J. Crystal Growth v.213 Contactless growth of ZnSe single crystals by physical vapor transport C.H.Su;M.A.George;W.Palosz;S.Feth;S.L.Lehoczky https://doi.org/10.1016/S0022-0248(00)00385-7
  19. J. Crystal Growth v.224 Photoluminescene studies of ZnSe starting materials and vapor grown bulk crystals C.H.Su;S.Feth;L.J.Wang;S.L.Lethoczky https://doi.org/10.1016/S0022-0248(01)00770-9
  20. Physico-Chemical Hydro-dynamics v.1 Fluid dynamics in crystal growth from vapors F.Rosenberger
  21. Growth of Crystals from the Vapour M.M.Faktor;I.Garrett
  22. J. Crystal Growth v.146 Mass flux of ZnSe by physical vapor transport Y.G.Sha;C.H.Su;W.Palosz;M.P.Volz;D.C.Gillies;F.R.Szofran;S.L.Lehoczky;H.C.Liu;R.F.Brebrick https://doi.org/10.1016/0022-0248(94)00483-8
  23. J. Crystal Growth v.80 Gorwth rate of CdS by vapor transport in closed ampoule C.H.Su https://doi.org/10.1016/0022-0248(87)90079-0
  24. J. Crystal Growth v.7 D.W.G.Ballentyne;S.Wetwatana;E.A.D.White
  25. J. Crystal Growth v.51 Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules B.L.Markham;D.W.Greenwell;F.Rosenberger https://doi.org/10.1016/0022-0248(81)90419-X
  26. the Proceeding of the ASME-WAM Winter Annual meeting, Fluid mechanics phenomena in microgravity, AMD - 174, FED-175 Transition to chaos in the physical transport process--I Walter,M.B.Duval
  27. J. Chem Vapor Deposition v.2 Convection in the physical vapor transport process-- Ⅱ: Thermosolutal convection W.M.B.Duval
  28. J. Chem. Vapor Deposition v.2 Convection in the physical vapor transport process-- Ⅰ: Thermal convection W.M.B.Duval
  29. J. Crystal Growth v.118 Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport A.Nadarajah;F.Rosenberger;J.Alexander https://doi.org/10.1016/0022-0248(92)90048-N
  30. J. Crystal Growth v.171 Physical vapor transport revised F.Rosenberger;J.Ouazzani;I.Viohl;N.Buchan https://doi.org/10.1016/S0022-0248(96)00717-8
  31. Modelling simul. Mater. Sci. Eng. v.3 Thermal convective effects on physical vapor transport growth of mercurous chloride (Hg₂Cl₂) crystals for axisymmetric 2D cylindrical enclusure G.T.Kim;W.M.B.Duval;M.E.Glicksman;N.B.Singh https://doi.org/10.1088/0965-0393/3/3/004
  32. J. Korean Crystal Growth and Crystal Technology v.12 no.6 Mercurous bromide (Hg₂Br₂) crystal growth by physical vapor transport and characterization S.K.Kim;S.Y.Son;K.S.Song;J.G.Choi;G.T.Kim
  33. J. Crystal Growth v.167 Physical vapor transport of zinc-telluride by dissociative sublimation H.Zhou;A.Zebib;S.Trivedi;W.M.B.Duval https://doi.org/10.1016/0022-0248(96)00305-3
  34. J. Crystal Growth v.208 Modeling studies of PVT growth of ZnSe: current status and future course N.Ramachandran;C.H.Su;S.L.Lehoczky https://doi.org/10.1016/S0022-0248(99)00512-6
  35. High Temp. Mater. Sci. v.35 R.F.Brebrick;H.C.Liu
  36. J. Crystal Growth v.65 Interfacial transport in crystal growth, a parameter comparison of convective effects F.Rosenberger;G.Muller https://doi.org/10.1016/0022-0248(83)90043-X
  37. J. Thermophys. Heat Transfer v.4 Interaction of surface radiation with convection in crystal growth by physical vapor transport M.Kassemi;Walter M.B.Duval
  38. Bird, The properties of gases & liquids R.C.Reid;J.M.Prausnitz;B.E.Poling
  39. Current topics in Crystal Growth Reseach C.H.Su;Y.G.Sha
  40. J. Crystal Growth v.51 Diffusive and Convective Vapor Transport in the GeSe-GeⅠ₄system H.Wiedemeier;D.Chandra;F.C.Klaessig