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ANALYTIC APPROACH TO DEFORMATION
OF RESOLUTION OF NORMAL ISOLATED
SINGULARITIES: FORMAL DEFORMATIONS

KiMio MIYAJIMA

ABSTRACT. We give an analytic approach to the versal deformation
of a resolution of a germ of normal isolated singularities. In this
paper, we treat only formal deformation theory and it is applied
to complete the CR-description of the simultaneous resolution of a
cone over a rational curve of degree n in P" (n < 4).

Introduction

Let V be a reduced irreducible normal Stein space with a singularity
at o € V. We assume that dimcV > 2 throughout the paper. In [7}, we
made a CR construction of the versal family of deformation of the germ
(V,0). The subject of this paper is an analytic approach to deformation
of resolution of singularities of V. Let f : V- V be a resolution of
singularities. We consider it as a holomorphic map (V, f~1(0)) — (V,0)
between germs of complex spaces. Though a normal Stein space is deter-
mined by its resolution, it is well known that all families of deformations
of V cannot be realized as families of resolutions of deformations of V' (cf.
[9]). Thus we consider the following deformation functor; for T' € An,

RES“;_)V(T)

&:V > T (resp. w:V — T) is a family of
F:V-V| deformations of V (resp. V) and
F:V—Visa holomorphic map
satisfying wo F = o and F l% =f
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where An denotes the category of germs of analytic spaces with the
distinguished point 0 and (Fy : V1 — V1) ~ (F2 : V2 — V2) if there exist
isomorphisms ¥ : V; — V, and X : V1 — Vs satisfying @y 0o ¥ = @y,
wyox =i, xo F1=FpoX, Xlp, =idy and x|y, =idy.

This type of deformation theory was considered for normal surface
singularities in [1] by algebraic method. We approach this deformation
via deformation of Cauchy-Riemann structure on V in order to connect
the deformation of resolution to the deformation of CR-structure on a
link of the singularities of V.

In this paper, we will consider only formal deformations. For the
actual deformation, we need an extra adjustment near the boundary of
the inductive construction in Theorem 4 together with an adjustment
of the operators in Section 2 and 3. Since it requires a new technique
other than the one used in [7], we will discuss it in the next paper.

In Sections 1, we will -theoretically describe the formal theory of de-
formation of resolution of normal isolated singularities. The main part
of this paper is Sections 2 and 3 where we will construct the homotopy
operators for the deformation complex which will be introduced in Sec-
tion 1. Relying on these operators, we can construct a formal versal
family of deformation of resolution of normal isolated singularities by
the method in [7]. In Section 4, we will apply our construction to the
case of a cone over rational curve of degree n(< 4) in P" and will give a
Cauchy-Riemann theoretic description of so-called the Artin-component.

1. Deformation functor and deformation complex

Let V be embedded in CV and denote f : V — V c CV aresolution
of singularities. Let Resy;_, be the functor as above and let

Def(/_’cN (T)
% :V — T is a family of deformations of 1%
=¢P®:V-CVxT| and ®:V — CV x T is a holomorphic map ¢ / ~
satisfying pry o ® = @ and <I>|‘~,O =f

where (Vy,®1) ~ (Va, @) if there exists an isomorphism X : V; — Vs
satisfying s o ¥ = @ and )ZI‘;O = idy.

ProrPOSITION 1.1.

Resy_, ~Defy_on-
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Proof. The only non-trivial part of the proof is to show that, for any
family F : V — C¥ x T in Defy_ on(T), F(V) — T is a flat family.
We assume that V' is an analytic subset of a neighbourhood of a small
ball B C CV centered at the origin o € CV. Let hy(w,t),..., hn(w,t)
be generators of the ideal sheaf IF(T}) of F(V). By Theorem 1.3 of [5]
and IV, Theorem 5.6 of [4], it is enough to show the following property:
any (u — 1)-th degree polynomials of ¢, p&“_l) (w,t),... ,pgﬁ_l)(w,t) €
HO(B, Op)[t] satisfying 3 o, P (w, t)hy (w, t) = O(t*), can be lifted
to a polynomials of degree pu, p&”)(w,t),...,pgﬁ)(w,t) € H%B,0p)|[t
satisfying p((,-”) (w,t) —p,(,”_l)(w,t) =0(t*) (6 =1,...,m) and

m
> oW (w, t)ho (w, t) = O(t**1).
o=1
It is proved by the argument of the proof of Theorem 5.1 of [2]. Let
ru(w,t) := the p-th order term of > 7 , p,(,“_l)(w,t)ha(w,t). Then, by
the assumption, r,(F(z,t),t) = 0. On the other hand, since r,(w,t) is
homogeneous of degree p in t, we have r,(F(z,t),t) — r,(F(2,0),t) =
O+,
Hence, f*r,(t) = 0. It follows that r,(t)|y = O since V is nor-
mal. Therefore, there exists homogeneous polynomials of degree p,
p1a(w,t), ..., Pmu(w,t) such that

Y0¥ (w, 1) + pou(w, ) ho(w, 8) = O(EH).
o=1

O

We shall consider the deformation functor Def;;_ v. Let O and

Ocn denote the sheaves of holomorphic vector fields on V and C¥
respectively. Then the infinitesimal deformation of this deformation
theory is described by the following fundamental exact sequence;

(1.1) 005 % ooy 5 Ty jon — 0

where 7j; v denotes the coherent sheaf f*©cn /Oy .

The following proposition is proved by the same argument as the
proof of Proposition 1.5 of [7].

ProPOSITION 1.2. (1) The space of first order deformations is
Ker{H'(V,05) & H'(V, fro0n)},
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(2) The space of obstructions to lifting to higher order deformations is
Ker{Hl(V',Tf,/CN) 2 gyv, O}, where H denotes the homo-
morphism T;; jon (’)g induced from the bundle homomorphism
dh : TYOCN — p*T1OC™ with denoting h := (hy,...,hm)-

For our treatment of this deformation theory, we shall make a O-

theoretic description of the above cohomology spaces.
Let K‘:/” be the following double complex.

(1.2)
0 0
0 ———— HO(V, f*®on) —2— HO(V,0p)™ 0
d * H m
0 —— K20 =A% (6y) —L— Al(frOcn) —E— (A2)Pm — 0
s s o
d,
0 A% (e5) I AZNfregn) —P—  (Akhem ——— 0
s s |5
) df y * H ) 7
0 ——  A¥ey)  —— AN(freon) —— (AT —— 0

|2 |5 |2

Then the following proposition is direct.
ProposITION 1.3. (1) HY(KZ®) =~ Ker{HY(V,0;) — H\(V,

F*0cn)}. i i
(2) H2(K"~/") ~ Ker{Hl(V,Tf,/CN) — Hl(V,O%)}.

Let 7 : V — R be a smooth exhaustion function which is strictly
plurisubharmonic on 1% \fH0);eg. 7= (Zgzl lwg|?) o f. We assume
that dr # 0 on V \ 7~1(0) and denote Q := {z e Vir(z) < c}.

We denote KZ° (resp. (K3,d)) the double complex (1.2) with V
replaced by €2 (resp. its total simple complex).

PROPOSITION 1.4. HY(K2*) ~ HI(KZ®) (=1, 2).
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Proof. For the proof, we recall the isomorphism
(1.3) H'(Q,E)~ H\(V,E)

for a holomorphic vector bundle E over V (cf. [6]).
Let ¢ = 1. As Proposition 1.3, we have

HY(KZ2*) ~ Ker{H'(Q,05) » H'(, [*O¢cn)}.

Hence our isomorphism follows by the isomorphism (1.3) for E = ©y; or
E = f*O¢n.

Let ¢ = _2 Let .A%iq(TV/CN) = Tg/CN ®o;, .A%Zq and define O(u ®
@) = u ® (0¢), where we denote A%’q the sheaf of differentiable (0, g)-
forms on V. We consider the differential complex (A%q (T e ~),0) and
denote its g-th cohomology group by HY(Q, T /CN)’ where we denote

A%q(T"}/CN) ={(u®d)g [uwse F(v,A%q(T?/CN))}' We remark

that the isomorphism
(1.4) HIQ, Ty jon) = H(V, Ty o)

holds for ¢ > 1 by the isomorphism (1.3) for E = Oy or E = f*O¢cw
and the following exact sequence together with the five lemma;

0 — AP (Op) — AX(f*Ocn) — ATy ,on) — 0.
As Proposition 1.3, we have
H2(K%') ~ Ker{ H(1, Ty jon) — H'(Q, Og)}

Hence, the proposition for ¢ = 2 follows by the isomorphism (1.4). O

2. Analysis on K2* (¢=1)

Based on the harmonic analysis on A?—l’l(@(,) and A%’l( f*Ocn), we
construct the following operators Z; and @; as in [7].

THEOREM 1. There exist operators Z7 : K}Z — K}? NKerd and Q) :
K }2 NKerd — K 592 satisfying

(1) leKer d = j~dlKer ds
(2) doQpod = d.
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3. Analysis on K%' (g=2)

In this section, we will prove the existence of the following Zs and

Q2.

THEOREM 2. There exist operators Zs : ng) — K% NKerd and Qs :

K2 NKerd — K} satisfying

(1) Z2|Ker d= iCllKer ds
(2) d0Q20d=d.

For the pr09f of this theorem, we need the harmonic analysis for
(A%"(T 7/c ~),0). Instead of the harmonic theory for the -complex with
values in the coherent sheaf Tg; /Ny We consider the following double

complex LZ°.

Then the following proposition is obvious.

PROPOSITION 3.1. (1) HY(Lg") ~ HO(Q,TV/CN)-

(2) HY(LE") = HNQ, Ty on)-

df *
—— Ag (f*6cw)
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We consider the harmonic theory on (the total simple complex of)
the double complex Lg®. Let

L = qu(@f,)_ & AYT 7 (f*Oen),
D(¢,g9) := (04,09 + (—1)%df ¢).

We fix hermitian inner products along the fibres of vector bundles
TV and TYOCYN. We define an inner product on L% as follows;

(($,9),(¢,9) = ($,¢') + (9, 9)-
PROPOSITION 3.2. The boundary condition of D-Neumann problem
is
D}, = {(6,¢) € LY [ o(9, dr)blan = 0, o(9, dr)é[an = 0}
and
D*(6,€) = (90 + (~1)77 F*¢,9€) for (6,€) € DY,
where 9¢ := £ — 9NO¢ if ¢ = 1 and F* is a bundle homomorphism
satisfying < df ¢, £ >=< ¢, F*£ > for ¢ € AL(By;) and £ € AY(f*Ocw).
Proof. For (¢,9) € LL ™ and (6,¢) € LY,
(D(4,9),(6,€)) = (89,6) + (89 + (=1)7""df ¢, £)

_ (6, 96) - /m < §,0(3,dr)8 >

+ (g,9€) — /a < fo0,dn)e >

+ (=17} (g, F*¢).
O

We shall construct the D-Neumann operators for ¢ > 2 following [3].
Denote

Qp(u,v) = (Du, Dv) + (D*u, D*v) + (u,v) for (u,v) € D},

and 15?9 the completion of ’D;’D with respect to @p. Then, since Qp(u, u)
> ||ul|? holds for u € D%, there exists a bounded injective self-adjoint
operator Tp : L‘(Iz) — L'(lz) with TD(L?Z)) C D} and

Qp(Tpu,v) = (u,v) holds for all u, v € 5qD.

Let Fp := Tp'. Then Dom(Fp) N DY = {ue DL Due DqD+1} and
Fpu = (Op + I)u holds.



716 Kimio Miyajima

Let H} := KerOp. Then we have the weak orthogonal decomposi-
tion
L'(Iz) = H}, + (RangeOp)°
where ¢ denotes closure.

ProrosIiTION 3.3.
I:ID (¢7 g)

= (05¢,039) + (=170, F*lg + F*df ¢, (-1)%[9,df]¢ + df F*g).
Proof. Since
D(¢,9) = (00,89 + (~1)%df¢) for (¢, 9) € L
D*(¢,9) = (9¢ + (—1)"1F*g,99) for (¢,9) € L
we have
D*D($,9) = (99¢ + (=1)1F* g + F*df $,909 + (—1)"df ¢)
DD*(¢,g) = (89¢ + (—1)710F*g,89g + (—1)7" df9¢ + df F*g)
Hence, we have the proposition. a
By proposition 3.3, we can carry out the standard argument of the es-
timate in the interior and at the boundary, and the elliptic regularization
(cf. [3]). It enables us to conclude the following:
PROPOSITION 3.4. For ¢ > 2,
(1) H}, := KerOp is finite dimensional and H}, C Lqﬁ,
(2) rangeOp is closed and we have a strong decomposition L‘(Iz) =
HY @ RangeOp.

Let Np : L., — Dom(Fp) be so-called the Neumann operator de-
(2)

fined by the above orthogonal decomposition; that is, Nu = 0 for u € H},
and Npu is the unique solution v of Cpv = u (v L H}) if w L H},.
Then we have the following

THEOREM 3. For q > 2,
(1) Np is compact operator,
(2) u = ppu + UpNpu holds for u € L‘(IQ), where pp denotes the
orthogonal projection onto H,
(3) Nppp = ppNp = 0, OpNp = NpBOp, DNp = NpD holds on
Dom(D) and D*Np = NpD* holds on Dom(D*),
(4) Np(LY) C LL,
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(5) if we denote ||(¢, 9)|Ix := |#llk + ||gllx, then [|Npu|lk+1 < Cllullk
holds for u € Lqﬁ.

We apply this harmonic analysis to the construction of the operator
Zs, Q2. We note that

qa_ 74 2,q—2
d(u, k) = (Du, 8k + (—1)9"* Hu)
where we denote H(¢,g) := Hg.

Proof of Theorem 2. Let (ag,b1,c_1) € L% @ K?_Z’O and denote

(a3,b1) := (pm © p+ DD*Np)(az, b1)
¢y i= pco + O*NHb,.
We define
Za(ag, b1, c-1) := (a5, by, cp)-
PropPosITION 3.5. (1) dZ3 =0,
(2) Zalker ¢ = id|Ker d-
Proof. (1)
d(ay, by, cp) = (D(ay, by), Och — HbY)
= (0,0,00* NHY, — Hb!)
= (07 07 0)’
since Hb) is J-exact. )
(2) Suppose d(az, b1, c—1) = (D(ag,b1),0co — Hby) = (0,0,0). Then
(ag,b1) = (p + DD*Np)(az,b1),

since (ag, b1) is D-closed.
Next, since H2(L°§) ~ Ker{Hl(Q,’Z},/CN) — H(Q, Og)} by Propo-
sition 3.1, we have
p(az,b1) = pp o p(az, b1).
Hence, it follows that (a5,by) = (ag,b1) and ¢ = peo + 0*NHb; =
pco + 0*NOcy = cp. |

Next, we define Q2. For (a5, b},c;) € Ker dN K%, we define

al,by) == D*N(alza_bll)
Ly 1= ch = HOf — 5" NHpp(ah, %)
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and
Qa2(a3, b1, ¢p) == (a7, bg, ).
PROPOSITION 3.6. dQod = d.
Proof. Let (a, b}, ¢p) := d(a1, bg, c=1) = (D(a, bo), c—1 + Hbp) and
(af,by) = D*ND(a1, bo)
c’, = (c_y + Hby) — Hbj — 0* NHpp(ajy,b).
Then
d(ay, bg, ;)
= (D*ND(a1,bo), (c—1 + Hbo) — Hb) — 0*NHpp(ah, b} + HbY))
= (D(ay,bp),c—1 + Hby)

= (al2’ /1706)‘

a

This completes the proof of Theorem 2. 0

4. An application

Using the operators Zs, Q2, Z1, @1, by the method of [7], we can
prove the following

THEOREM 4. Let d := dimc HI(K%”) and £ := dimc H*(K2
Then there exist bi(t), ..., be(t) € Cllt1,...,tq]] and (&(t),g(t), k(t
Kl[[tl, .., t4]] such that

Dle

)-
€

—

)

(1) $(0) =0, 9(0) =0, k(0) =0,

(2) 99(t) — 31e(t), (t)] = 0 mod(ba(t),. .., be(t)),

(3) (60— ¢(t))(f+9( )) =0 mod(b1(2), ..., be(t)),

(4) (h+ k() o (f +9(t)) = 0 mod(b1(2), .., be(t ))

(5) the linear term of (¢(t),g(t),k(t)) is Z ty(¢y, gy, ky) where

{(¢y,9+,k )} 4 s a basis Ole(Ki.)

(6) for any family (q> Y — CN x S) € Defy_on(8) with @ C ¥y,

where S’ is a formal space, there exist a map T 0§ - T a map
G:Qx8 — V commuting with maps OxS — SandV — S and a
map  : Bx S — C¥ x § with 7(0) = 0, Glayo = idg, ¢|Bx0o =idB
and ®oG = (o(f+g) and such that G is holomorphic with respect
to the family of complex structures ¢(7(s)), where we denote by
f+g(t) amap Q xT — CN x T defined by f + g(t).
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(7) If HX(KY") =0 then by () = - -+ = by(t) = 0.

Relying on this family, we complete the CR-~description of the simul-
taneous resolution of deformations of a cone over rational curve of degree
n in P for n < 4.

Let V,, := C? /2, and M, := S3/Z,, where Z,, denotes a cyclic group
generated by g, € Aut(C?) with g, (21, 22) = (Cn21, Caz2) where ¢, =
e2V=1r/n Then V, is realized as a normal subvariety of Cctl. We
denote by f: V;, — C™*! the natural inclusion map.

We denote by Z, Z and T the vector fields on S2 defined by Z :

E21

d
Zzﬁl - 218——25‘, Z = 2’2% - 21% and T := AV (216'_2? +226z2
_2—2_6_>
75 )
By applying the algorithm in [7] constructing the versal family of sta-

bly embeddable deformation of CR structures on M, (hence, its image
in C™*! bounds the versal family of deformations of Vi), we have

2
155

THEOREM 5. ([8]) The versal family of stably embeddable deforma-
tion of the CR structure on M, is given as follows.

(1) (n = 2) The parameter space is (C,0) and the versal family is
given by ¢(s) = sZ ® Z* together with a family of holomorphic
embeddings

F4+F(s): (21, 22) = (22 — 552, 2120 + 5152, 22 — $512).
(2) (n = 3) The parameter space is (C2,0) and the versal family is

given by ¢(to,t1) = (toz1 + t122)T ® Z* together with a family of
holomorphic embeddings

f+ flto, 1) : (21, 22) = (25 — —\/_lez(l + |21 )to — *\/_21222t1,
2220+ 5\/—_1|z|4t0 - 5\/“_121521Z2| t1,
2175 + E,)-\/_———222_1|21|2t0 - g\/—_1|22|4t1,
P \/_z2212t0 += \/—2221(1 + |z2?)t1).

(3) (n = 4) The parameter space is (Spec(C{s,to,tl,tg}/(sto,stl,
st2)),0) and the versal family is given by ¢(s,to,t1,t2) = sZ ®
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Z* + (o7 + 17122 + ta?2)T ® Z* together with a family of holo-
morphic embeddings

F+f(5,0,0,0) : (21, 22) (zi1 - $2225% + &5t
220 — sum(z)f — |a?) - sfan’,
2225 + 25|21 |z + s° 22 &5,
21725 + szazi(|z2)? — |21)?) — 2 2% %,
25 — 822350 + 822_14),
f+ f(0,t0,11,t2) : (21, 22) — (2‘11 - to4/3\/—_1212_2(|21|4 + |21]2 +1)
— 814V 122 52 (|22 /2 + 2207 /6) — t24/3V 123 5°,
2322 + tod/3vV—1|21|° — t14v=1215|22)* (211 /2 + | 22|°/6)
— t24/3v =12} 5°|22 %,
2222 +t04/3vV=1za |zt + tidv=1|z1|* (|27 /6 + | 22[°/2)
— t24/3V =121 |22|%,
21725 + tod/3vV=1234% 21 |° + t14v =122 |21 (|21 > /6 + |22]2/2)
— t24/3v=1|2|°,
78 +t0d/3vV =125 5% + t14vV—122 5% (|21|% /6 + |22]°/2)
+ t24/3vV— 12251 (|22|* + |22|* +1)).

Where we denote points of M, by the coordinate (z1,z) of C? (the
ambient space of its universal covering).

Let V = H~" and E be the zero-section where H denotes the hyper-
plane bundle over P1. Then (V, E) is the minimal resolution of V. We
shall compare families of deformations of CR-structures on M, as above
with deformations in Defy | ~nia-

First, we compare the spaces of first order deformations;
Ker{H'(Q,03) — H'(, f*6g~)} and Ker{H}, (Mo, T') — Hj, (M,, f*T°CM)}.

We will do it via the following isomorphisms of holomorphic vector
bundles over M,,.

0 — 1y, —— T —— THOM, —— 0

(4.1) l: pwlz dﬂlg

0 —— mH™ — TWV|y, ——— TPl —— 0

where 7 denotes a holomorphic map M, — P! induced from the  pro-
jection of the vector bundle V = H~" — P! and pb0 : T/ — T1O0V |y,
the projection to the (1,0)-part with respect to the complex structure

of V.
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Let &, := % where 6 denotes the angular coordinate of the fibres of

H™". Then, via the n-th covering map g, : C?\ {(0,0)} - H ™\ E, we
have
(4.2) dg,T = n&,.
We note that g,(S%) = M,, and consider the operation of N, := v—1L¢,
on Hgb(Mn, 1a.), H(%b (M,,,T") and Hgb (M,,, T*OM,,) respectively. We
denote H gu)(l M), H gy) (T") and H gu) (T*OM,,) the eigenspace belonging
to the eigenvalue v.

PROPOSITION 4.1. Ker{H(%b(Mn,T’) — H} (Mq, f*TYOCN)} C HY,
(M, T").

Proof. Since

V-1Lr(FARZQZY) = (s +t + )T’ HZ Q Z*
V-1LrG*HBT® Z*) = (s +t + )7° R T ® Z*,
we infer the proposition from (4.2) and Theorem 5. a

On the other hand, N, := v/—1L, naturally operates on the pullback
bundle 7*€ of a holomorphic vector bundle £ over P! and we have a
natural isomorphism
(4.3) L) (M, 7€) ~T(PY,E @ HY) (v € Z).

This provides us a way to extend an element of A%(W*S ) to A%’q(ﬁ*ﬁ' )
holomorphically along the fibres of H~".

Since TYOV (—log E)| s, is a pullback bundle, while T30V is not, we
consider the following isomorphisms instead of (4.1);
(4.4)

0 —— 1y, —— T — TWpAL, — 0

l:: plvol: dnl:

0 —— 1y, —— TYOV(—logE)|p, —— = TP —— 0.
Since the operations N, on these bundles commutes with this dia-
gram and with the Jy-operators, we have the following isomorphisms of
eigenspaces of cohomology groups;
(4.5)

- ng)(an) —_ ng)(Tl) - ng)(Tl’oM") —_—

l- o] |

- ng)(lM") _—_— ng)(Tl,O(—logE)an) — HEIU)(‘/r*Tl,OPI) _
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Using these isomorphisms, we can compare the spaces of first order
deformations.

PROPOSITION 4.2. (1) (n = 2) The family of CR structures ¢(s) =
sZ ® Z* is not extendable to a family of deformations of complex
structures on H™2,

(2) (n =4) The family of CR structures ¢(s,0,0,0) = sZ ® Z* is not
ext;indable to a family of deformations of complex structures on
H=,

Proof. We note that Z ® Z* defines a non-zero cohomology class
in H(ll)(Mn,TlvoMn) ~ HY(P!,T'9P! @ H). Hence, the cohomology

class cannot be extended to a cohomology class in H 1(17, o THOPY). Tt
implies the impossibility of extending Z ® Z* to a cohomology class in
HY(V,TYV).

Hence the first order deformation of CR structure represented by sZ®
Z* is not extendable to a first order deformation of complex structure
onV. ]

Next, we prove the following extendability of families of CR structures
to families of complex structures, parametrized by another component.

PROPOSITION 4.3. (1) (n = 3) The family of CR structures on M3,
$(to, t1) is extendable to a family of complex structures on H™3
which is stably mapped to C*.

(2) (n = 4) The family of CR structures on My, ¢(0,19,t1,%2) is ex-
tendable to a family of complex structures on H—* which is stably
mapped to C5.

Proof. First, we prove that the family of CR structures is extendable
to a family of complex structures on V. By the commutative diagram
(4.5), the cohomology class of Zi75p"0T ® Z* (s +t = n — 2) is extend-
able to a cohomology class in H 1(17,T1’0‘~/). Hence the family of CR
structure is extendable to a first order deformation of complex structure
on V. Since that extension is holomorphic along the fibres, it preserves
the integrability condition. Indeed, the extension to higher order defor-
mation of complex structure is given by

b(to, t1) := —3v—1(tg + t17) /(1 + |u|2)3a£C ® da (n = 3),

Blto, ta, ta) = —4vV/=1(to + 11T + t28°) /(1 + luP)‘*(—% ® du (n = 4),
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where u (resp. () denotes the inhomogeneous coordinate of P! (resp.
the fibre coordinate of H~").

Next, we prove the extendability of the family of CR-embeddings to a
family of holomorphic mappings. Since f(tg,t1) € A(()o)( fr*THCH ko, 1]
and f(0,to,t1,t2) € A?O)(f*Tl’OC5)[t0,tl,tz], we have their natural ex-
tensions f(to,tl) € A%(f*Tl’OC4)[t0, t1] and f(to,tl,tg) EA%(f*Tl’OCE’)
[to, 1, 2] respectively (cf. (4.3)), which are constant along the fibres of
H~" and which respectively satisfy the parametrized Cauchy-Riemann
equations

(5 - g(t()ytl)) (f+f(t07t1)) =0, (5” g(t()?tla t2)) (f+f(t0’ tlrt2)) =0.
In fact, it is given by

£+ Flto,t) =(¢ — SvT0@+ /(1 + uf)Pto — Sv=T02/(1+ s,
Gt ST/ o — ST 0+ e,
Gu + SV T/ (1 + [0t — SV Tl /(1 + s,
Cu® + g\/—_hﬁ/(l + [u*)?to
+ 5VTu( + 2/ + uf)t) (0 =3)

4+ Flto, ta,t2) =(¢ — 4/3v=Ta(lul" + 3Jul* + 3)/(1 + [ul*)’to

—2/3vV=Ta"(jul* + 3)/(1 + [ul")*t1 ~ 4/3v=Ta" /(1 + |u|*)*t2,
Cu+4/3V=T/(1 + [uf*)’to — 2/3V=Tju[*B(3 + [uf*) /(1 + ul*) s
— 4/3V =TT /(1 + [ul*)*t2,
Cu® +4/3V=Tu/(1 + [u*)’t0 + 2/3v=1(1 + 3Jul*)/(1 + |u*)*ts
— 4/3V=Tul*T/(1 + |uf*)’ts,
Cu® +4/3v=Tu? /(1 + [uf*)*to + 2/3v=Tu(1 + 3Jul*) /(1 + |u*)*t,
—4/3V=Thu|° /(1 + [ul*)’¢z,
u® +4/3V=T1® /(1 + [u|*)*to+2/3v=Tu’ (1 + 3Jul*) /(1 + [ul*)*tx
+4/3vV=Tu(3lu|* + 3Ju)* +1)/(1 + ]u]2)3t2) (n = 4).

O

These arguments provide us a Cauchy-Riemann theoretic approach
to the Artin-component. By [1], it is known that there is an irreducible
component of the parameter space of the versal family of deformations
of V,, having the following property; after lifting the component of the
parameter space to a finite cover, the family of singularities is simulta-
neously resolved. It is called the Artin-component.
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We describe the Artin-component from our viewpoint, in the case as
above.

COROLLARY 4.1. The Artin-components are given as follows;
(1) (n=12)(C,0),
(2) (n=3)(C%0),
(3) (n=4) (C3,0) defined by s = 0.

Proof. The case of n = 3 is obvious from Proposition 4.3.

The case of n = 4. First, we show that Hl(V,Tf,/CN) = 0. Since
V is rational surface singularity, we have H 1(17, Op)=H 2(17, Oy) =0.
Hence, by (1.1), we have HI(V,T;,/CN) = 0. By Theorem 4 (7), the
parameter space (S,0) of the versal family for Def;_ v is smooth.
Let T = (CUC3,(0,0)) be the parameter space of the versal family of
deformations of V4. Then there exists a holomorphic mapping 7: S — T
in the formal sense. By Propositions 4.2 and 4.3, 7(S5) is contained in
C3. On the other hand, there exists a holomorphic mapping o : C3 — §
in the formal sense and it holds that doodr = idp, s and drodo = idpys.
Hence, 7 (and o) is a formal isomorphism and therefore 7(S) = C? in
the formal sense. It implies that (C3,0) defined by s = 0 is the Artin-
component.

The case of n = 2 follows from the following proposition since Propo-
sition 4.4 implies that if we lift the family of CR structures to a double
cover of the parameter space, it bounds a deformation of H~2 which is
stably mapped in C3. O

PROPOSITION 4.4. The family of CR structures ¢¥(u) = uT ® Z*
together with a family of holomorphic embeddings
f4g): (21, 22) — (22 — 2uz1 %, 2122 + u(|z1]? — |22]?), 23 + 2usi2e)

bounds the family of singular varieties defined by wowz — w? +u? = 0.
While the family of CR structures ¢(s) = sZ ® Z* bounds the family
defined by wows — w% +s=0.

The proof of the proposition is a direct computation.
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