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THE CONDITIONS FOR REPELLING
THE AUTOMORPHISM ORBIT
FROM THE BOUNDARY POINT

Ji1soo BYUN

ABSTRACT. In this paper, we first prove that there are no auto-
morphism orbits accumulating at a boundary point of the largest
isolated finite type. We also present a generalization of the results of
Isaev and Krantz on the structure of the orbit accumulation points.

1. Introduction

For a domain 2 in C", we denote by Aut(?) the group of holomorphic
automorphisms of . It is obvious that Aut(Q) is a topological group
with respect to the law of composition and the compact-open topology.
In particular, it is a theorem of H. Cartan that Aut(f) is in fact a Lie
group, if Q is bounded.

In light of the outstanding question “Which domains possess non-
compact automorphism group?’ there is much interest focused upon the
existence and non-existence of orbits of the automorphism group action
accumulating at a given boundary point. The well-known Greene-Krantz
conjecture belongs to such a line of research. In this paper, we discuss
the finite type boundary points that repel automorphism orbits.

Denote by 7 the D’Angelo type (see [9]). Let M be the Catlin mul-
titype (see [7]). Now, we present our main theorem.

THEOREM 1.1. Let Q be a domain in C". Assume that there exists
a point p € 0§ admitting an open neighborhood U in C" satisfying the
conditions:

(1) the boundary 9% is C*° smooth convex and of finite type in the
sense of D’Angelo,
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(2) M(p) # M(p), for every p € U NN\ {p}.
Then, there are no automorphism orbits in ) accumulating at p.

In n = 2, there is a more general result without convexity assumption
in [6]. This is the first result in higher dimensional complex space.

Another important theme in the study of pseudoconvex domains con-
cerns the set S(€2) of all orbit accumulation boundary points of the given
domain Q. An article by S. Fu, A. Isaev and S. G. Krantz ([10]) have an-
alyzed the structure of S(f2) for the case when ) is Reinhardt, showing
that S(€) forms a manifold of odd dimension between 1 and 2n — 1 in-
clusive. The result obtained by A. Isaev and S. G. Krantz ([14]) is that
it is a perfect set if Q is a bounded pseudoconvex domain with finite
type boundary and if S(2) contains at least 3 points. We present in this
article a resonant result in a more general situation, without assuming
the boundedness or the Rienhardtness condition.

THEOREM 1.2. Let 2 be a domain in C" with a boundary point
p € 00 admitting an open neighborhood U in which 9 is C* smooth
convex of finite type in the sense of D’Angelo. If p is an automorphism

orbit accumulation point, then p is also an accumulation point of the
set S(2).

In [14], A. Isaev and S. G. Krantz drew several questions. One of
them is that for a smoothly bounded domain D, can the set S(D) have
uncountably many connected components? For example, can it be a
Cantor-type set?

Here is a partial answer for this question.

ProPOSITION 1.3. Let ) be a smooth bounded pseudoconvex domain
of finite type in C2. Then S(f2) is connected.

We organize this paper as follows. We give a brief introduction about
the scaling theory on convex domains of finite type in Section 2. For
smooth exposition, we introduce several boundary invariants for exam-
ple, the Catlin multitype, and so on. In Section 3, we prove a key lemma
and Theorem 1.1 and 1.2. In the last section, we give an introduction
to the Hausdorff set convergence and prove Proposition 1.3.

2. The Catlin multitype and scaling theory

Let (21,..., zn) denotes the standard Euclidean coordinate system of
cn.



Boundary accumulation points 683

2.1. The Catlin multitype and linear multitype

Let p denote a smooth defining function such that Q = {(z1,..., zn) |
p(z1,...,2n) < 0}. Let I',, denote the set of all n-tuples of numbers
A= (A1,..., ) with 1 < A;j < oo such that

(2.1) M << A,
and for each k, either A\ = oo or there is a set of nonnegative integers
a1,...,a with ax > 0, such that
LI
=1
i

An element of Ty, will be referred to as a weight. The set of weights can be
ordered lexicographically, i.e. if A’ = (A],..., X)) and A” = (\],...,\}),
then A" < A” if for some k, \; = XJ for all j < k, but A}, < Ay,

Now let p be a given point in the boundary of a domain Q with a
defining function p. A weight A € T';, is said to be distinguished if there
exist holomorphic coordinates (21, ..., 2,) about p with p mapped to the
origin such that

if Z gj——;—ﬂj— < 1, then Daﬁgp(p) = 0.

j=1

Here D® and T)-ﬁ denote the partial derivative operators

gl 5181
62:?1 ...82:%” an B'le "'—B—Znn

respectively.

DerINITION 2.1. The multitype M(p) is defined to be the smallest
weight M = (my,...,my) in T';, such that M > A for every distin-
guished weight A.

A weight A € T, is said to be linear distinguished if there exist
linear holomorphic coordinates (z1,...,%,) about p with p mapped to
the origin such that

= aj+16j a B —
IfZT < 1, then DD p(p) = 0.

=t "

DEFINITION 2.2. The linear multitype L£(p) is defined to be the small-
est weight £ = (l,...,1,) in T, such that £ > A for every distinguished
weight A.
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2.2. The D’Angelo type and line type

If f is a smooth, complex-valued function, defined near the origin in
C, let v(f) denotes the order of vanishing of f — f(0) at the origin. For
vector-valued F' = (f1,..., fn), let v(F) = min; v(f;). The following
definition was formulated by D’Angelo in [9]. In two dimensional com-
plex space, J. J. Kohn introduced and studied the boundary invariant
type in [16].

DEFINITION 2.3. Let €2 be a smooth domain with defining function p.
A point p is of finite g-dimensional variety type if there exists a constant
m such that
v(po F)

Ay(p) = Slllrp W— <m

for F' a holomorphic parameterization of a g-dimensional complex ana-
lytic subvariety of C" with F(0) = p. Ag(p) is called the ¢g-dimensional
variety type at p.

A complex line in C" is a set of points of the form {a{ +b|({ € C}
for fixed a,b € C". In a manner analogous to Definition 2.3, we will
consider the order of contact of 02 with complex lines.

DEFINITION 2.4. p is a point of finite line type if there exists a con-
stant K such that
supv(pol) < K
l

for | a parameterization of a complex line with [(0) = p. The smallest
K for which the inequality holds will be called the line type of p denoted

by L(p).
It follows immediately from the definitions that
L(p) < Ai(p).
2.3. The relation about several types

Let p be a boundary point of ). Assume that M(p) = (mq,...,my)
is the Catlin multitype at p. By [7], we have the following inequality
Mn+1-1 < Dg(p)
foreachg=1,...,n.
According to [5, 18], if Q is convex, then L(p) = A;1(p). J. Yu ([24])
proved that the Catlin multitype and the linear multitype coincide:
L(p) = M(p),

if Q is a smooth bounded domain in C" and if  is convex near p.
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EXAMPLE 2.5. Let H(z2s,...,2,) be a real valued polynomial defined
on C"! and let oy, ..., oy be positive real numbers with ag < -+ < a,.
Then H is called weighted homogeneous of degree one with respect to
a2,...,0n if

H(tl/a2z27 . ’tl/a"zn) = tH(ZQ, e ,Zn)

for every t € R.
The polynomial H is non-degenerate if the set {H =0} does not
contain any analytic set of positive dimension. We denote My by

My = {(21,...,2n) € C" | Re 21 + H(23,...,2,) < 0},

which is usually called a model domain.

If H is a weighted homogeneous non-degenerate polynomial of degree
one with respect to ag,...,an, then M(0) = (1, 9,...,a,), where o €
OMp is the origin of C".

2.4. The scaling method and its convergence

Since S. Pinchuk developed the scaling method, the other researcher
improved the scaling method for example, E. Bedford, K. T. Kim, S.
Krantz, F. Berteloot, J. McNeal, H. Gaussier, and A. Kodama and so on.
In order to smooth exposition, we would like to introduce scaling method
in convex domain in C™. The content of this subsection is contained in
(11, 12, 19].

Let ©2 be a domain in C™ of finite type and let M(p) = (1, as, ..., an).
Assume that 0Q is convex near a point p of Q. There exists a neigh-
borhood V of p in C" such that 2 NV is convex and is defined by a
convex function p of the form

p(z1,---,2n) =Re 21+ H(zo,...,20) + -+,

where H is a non-degenerate polynomial of degree one with respect to
02, ..., 0p and the dots denote terms of degree more than one.

From now on, we assume that p is an orbit accumulation point of Q.
Then there are a sequence {h;} of automorphisms of ! and an interior
point ¢ € Q such that

J—00
We may assume that hj(q) € V N Q for every j and let T; be the
translation defined by Tj(z) = z — hj(q). We will construct a unitary
map A; such that A; converges to a unitary map A.
We first compute the distance from h;(g) to QN V. For a suffi-
ciently small neighborhood V/, there is a unique point p] € 92NV such
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that dist(h;(q),p}) = dist(h;(g),d2 N V). Let 2] be the correspond-
ing complex line satisfying that p{ lies in the real positive axis z{ . We
set (5{ = dist(h;(q), p{) We consider the orthogonal complement of the
complex line 2] through h;(g) and compute the distance from h;(g) to
002NV on each complex line in this complement. Because of the as-
sumption of finite type, the largest such distance is finite and is achieved
at a point pé on the real positive axis 23 of the complex line zj,. We set
& = = dist(h;(q), pé) Repeating this process, we obtain real numbers
5{, . 5] We can define a unitary map A; such that
1) A;j o T; is a holomorphic coordinate system centered at h;(g), de-
noted by (zl, 2,
2) for each k = 1,...,n, the segment of h; i{q) and p{c lies the positive

real axis of zk, Where a holomorphic coordinate system (zl, . zn)
centered at h;(q).

Define
zZ1 Zn
A]’(Z]_,...,Zn)"——’ (—,,—) .
]

g; = —pohi(q)

1 -
pj = —po(hjod;oTy™
€j
then p; is given in a neighborhood of the origin by

1 L
pi(z) = —1+—Re <Za£5£zj>

J v=1

Let

1 ; 1

il J +18l 058 4 2m+1

+€j Yoo O gsleitiflez +Ej(9(|z| ).
2<]al+|B|<2m

By Proposition 2.1 in [11], p; converges uniformly on compact subset
of C™ to a smooth convex function g of the form

p(z) =—1+Re Y bjz; + H(z),

where H is a real convex polynomial of degree less than or equal to 2m.
This result depends on the uniform estimates of the coefficients of p;
Also Gaussier proved that §2 is taut and that the sequences {f;} and

{ fj_l} are normal families, where f; = Aj o Aj 0T o hj. By Cartan
Uniqueness Theorem, we can deduce the following result.
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THEOREM 2.6 (Gaussier). Let €2 be a domain in C" and p € S(f2)
an orbit accumulation point with M(p) = (1, aa,...,a,). Assume that
there is a neighborhood U of p such that 0Q N U is of class C* and of
finite D’Angelo type. If there is a coordinate system centered at p such
that QNU is convex in this system, then Q is biholomorphic to its model
domain My at p defined by

My ={(z1,...,2n) | Re 21 + H(22,...,2,) < 0},

where H is a non-degenerate polynomial of degree one with respect to
ag,...,0n.

This reveals the uniqueness of model domain in C™ with respect to
the automorphism orbit accumulation point p. F. Berteloot proved that
the uniqueness of model domain in C? as follows.

THEOREM 2.7 (Berteloot). Let Q be a domain in C? and let p be
a point on 0. Suppose that 02 is of class C*°, pseudoconvex and of
D’Angelo finite type T in a neighborhood of p. Let y; € Aut(Q) satisfy

lim ¢;(q) =p
j—00

for a point q € ). Then 2 is biholomorphically equivalent to the model
domain My, where H is a homogeneous subharmonic polynomial of de-
gree 7(p) such that the local defining function p of § near p is represented

by
p(z1,22).= Re 21+ H(22,%2) + -+ .

3. Proofs

Let A denote the open unit disc in C. The following lemma, is con-
tained in [6]. For a smooth exposition, we prove it.

LEMMA 3.1. Let 2 be a domain in C™ and let p be a boundary point
of Q). Assume that there are an open neighborhood U of p in C" and
a sequence of injective proper holomorphic maps g; : A — ) satisfying
the following conditions

1) U NQ is pseudoconvex,

2) lim g;(0) =p.

]/

Let E =Jj2; g;(A) N 0N Then p is not an isolated point of E.
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Proof. Expecting a contradiction, we suppose that p is an isolated
point of E. So, there exists § > 0 such that

Ilp —gll >4, Vg € E\ {p}.
Choosing a subsequence if necessary, we may assume that
é )
9i(0) € B(p; ), Vi=1,2,....
Now, for each ¢ with §/3 < t < 26/3, we let
St = {z€C'||lp—2| =t}

By = {z€C"||lp—2zll <t}.
Applying Morse-Sard theorem to the smooth map
F:gn(A)—R

defined by F(¢) = ||¢ —p||?, we infer that for each positive integer m, and
for almost all values of t, the set StNgm(A) is in fact a real 1-dimensional
manifold without boundary. We also can conclude that B; N g, (A) is a
smooth submanifold with boundary in S; N g, (A).

Moreover, we shall verify that S; N gm(A) is a compact set. Since it
is a bounded subset of C", we are only to prove that it is closed.

Let € S; N gm(A). Then there is a sequence zx € S; N gm(A) such
that zx — = as k — o0o0. Since zp € gm(A), there exists a sequence
¢k € A such that g, (Cx) = zx for each k. Because A is compact, there
are a point ¢ € A and a subsequence (x; such that (z; — ¢ as | — oo. If
¢ € 0A, by virtue of the properness of g,,,, we have

z = lim zy
l—00
= lim gm((kl)
l—00
e 0Q.

This leads us to ||z — p|| =t and = € E \ {p}. Since this is impossible,
we must have { € A. Hence z = gn(¢) € gm(A). This implies that
St N gm(A) is closed. O

Let X, denote the connected component of B;N g, (A) with g, (0) €
Xm and let G, = g,,1(X,). Then Gy, is a domain in A. We now show

CLAIM. There exists a simple closed curve 7, in A satisfying

(1) gm('Ym) C St7
(2) 0 is an interior point of .
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Proof of the claim. Notice that 0 is an interior point of G,, and
9 (S¢ N gm(A)) is a finite union of simple closed curves. Therefore,
the claim follows by the argument principle as soon as we prove that
aG’m C g';zl(st N gm(A))

Step 1. If z € 8G,, N A, then = € g;,}(S; N gm(A)).

Since z € ANIGm, we obtain gm(z) € X\ Xom. Since gin(z) € Q, we
have gm(z) € QNXp\ Xm C StNgm(A). Therefore, z € g1 (SiNgm(A)).

Step 2. G, C g, (St N gm(A)).

In order to prove this, we suppose that there is a point x € dANIG,,.
We can choose 79 < 1so that g,,,}(SiNgm(A)) € {z € C | |z| < ro}. Now,
we are only to show that C, = {z € C | |z| = r} is contained in G, if
ro < r < 1. The existence of x € OA guarantees that C, N Gy, is
nonempty. If C, ¢ G,,, then there is a point ¢ € C, N JG,,. By step 1,
q € g:.1(S: N gm(A)) and |q| = . This is a contradiction. d

Let ~,, be the simply connected curve selected in the preceding claim.
Let I, be the set of all interior points of +,,. It contains the origin by
construction. We then choose a Riemann map f,, : A — T, with
fm(0) = 0. Then the composition h, = gm © fr : A —  defines an
analytic disc satisfying

hm(0) = gm(0)
hm(aA) = gm(’)’m) C 8.
Since 2 is pseudoconvex, we have that —logd(z, Q) : © — R is a pluri-

subharmonic function, where d(z, ) denotes the Euclidean distance
from x to the boundary 9€2. Consequently,

d(hm (D), 50)

d(hm (), Q)
d(hm(0), )

d(9m(0),p)
— 0asm — oo.

IA A

In particular, there exists gm € hpm(0A) C S; such that
d(gm, 0N) = d(hp(0A),00) — 0

as m — oo. Thus, there exists ¢ € S; N OS2 such that ¢ is a limit point
of the sequence ¢,,. Namely, we have found a point ¢ € £ N S;. By the
choice of ¢, we have arrived at the desired contradiction.
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3.1. The proof of Theorems 1.1 and 1.2

Suppose that there are a sequence {¢;} C Aut(Q2) and a point z € Q
such that
lim ;(2) = p.
J—00
By Theorem 2.6, there is a biholomorphism ¥ between §2 and the do-
main My, where H is a non-degenerate weighted homogeneous polyno-
mial of degree one with respect to ag,...,a,. Since H has some ho-
mogeneous property, the model domain Mg contains the real half plane
P = {(21,...,2n) | Re 21 < 0,29 = - - = 2z, = 0} which is contained in
the orbit of (—1,0,...,0) by the action of the automorphism group
Aut(M H)-
Define an injective proper holomorphic map u: A — My by
W) = (57.0,10)

for every z € A. We consider a sequence of injective proper holomorphic
maps g; 1= @; © ¥~ o 4 from the unit disc into § satisfying

9i(0) = ¢;(q),
where ¢ = ¥~1(—1,0,...,0). Moreover g;(A) is contained in the orbit
of ¢ by an action of Aut(f2).
By lemma 3.1, p is not an isolated point of [J;Z, g;(A) N9 C S(?).
Therefore, the proof of Theorem 1.2 was done.
For the proof of Theorem 1.1, we will suppose that there are a se-
quence {p;} € Aut(f2) and a point z € Q such that

lim ¢;(z) = p.
j—oo

By Theorem 1.1, there is a sequence {px} of points in S(f2) converging
to p. By condition (2) in Theorem 1.1, we have M(py) # M(p) for a
sufficient large N. By Theorem 2.6, there are biholomorphisms ¥, ¥ and
model domains My, My, with respect to p, py in S() respectively.
Note that a map VoU-lisa biholomorphism between My and My, .
By [8], we obtain M(py) = M(p). This is a desired contradiction.

4. The Hausdorff set convergence

In this section, we introduce the Hausdorff set distance and con-
vergence theorem which is called the Blaschke selection theorem. The
content of this section is contained in 4, 13, 17, 21].
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Let (X, d) be a metric space. For a point z € X and a positive real
number r, we denote by

B(z;r) ={y € X | d(y,z) <r}
and
B(z;r) ={y € X | d(y,x) <r}.
for a subset A C X and r > 0, we denote the r-neighborhood of A by

N.(A) = U B(a;r).

a€A
Let A and B be subsets of X. We define the quantity d*(A, B) by
d"(A,B) =inf {r > 0| A C N.(B)andB C N,(A)}.

Let F(X) be the family of all closed subsets of X. Then (F(X),d") is a
metric space. Moreover, if X is complete, then (F(X),d") is a complete
metric space.

THEOREM 4.1 (Blaschke’s Selection Theorem). Let (X, d) be a metric
space, and let K C X be a compact subset. Then the metric space
(F(K),d") of closed subsets of K equipped with the Hausdorff metric
d” is compact.

In a metric space, the compactness implies sequential compactness.
We have the following statement.

THEOREM 4.2 (Generalized Blaschke’s Selection Theorem). Let (X, d)
be a metric space. Let K be a compact subset of X. Then every se-

quence of closed subset of K with respect to the Hausdorff distance
dh.

4.1. The proof of Proposition 1.3
For the proof, we present a fact in [6].

THEOREM 4.3. Let Q) be a domain in C? with a boundary point
p € 90 admitting an open neighborhood U in which 89 is C* smooth
pseudoconvex of finite type in the sense of D’Angelo. If p is an automor-
phism orbit accumulation point, then p is also an accumulation point of

the set S().

By the above theorem, we may suppose that S(Q2) contains infinitely
many points.

Expecting a contradiction, we will suppose that S(£2) is disconnected.
We can choose two points pi, po and two distinct connected components
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S1, Sa of S(02) satisfying p; € 51 and py € S3. There are two automor-
phism orbits w}(q) and <p]2-(q) converging to p;, ps respectively.

By Theorem 2.7, there is a biholomorphism ¥ between (2 and the
model domain My, where H is a homogeneous subharmonic polyno-
mial without harmonic terms. By [20], Aut(2) has finitely many con-
nected components. Without the loss of generality, we may assume that
@ o v3(q), o p2(q) is contained in the orbit of ¥(g) under action the
connected component Aut,(2) of Aut(Q2) containing the identity map.

We may construct a sequence of curves v; from [0,1] into My such
that

1) 7j(0) = ¥ o pj(q) and v;(1) = ¥ 0 p3(g),
3) v;(I) is a subset of the orbit of ¥(q) under the action Aut,(£2),

where the convergence in 2) means the local Hausdorff set convergence.

Since ¥ is proper, the sequence ¥~! o v;(I) is in the F(Q). By
Theorem 4.2, there is a subsequence ¥~v;, (I) whose Hausdorff set
limit exists, denoted by I. Therefore, I C S(). Since ¥~ o, (I)
is connected, so is I. Since p1, po are contained in the I, we have a
contradiction.
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